z c 3900 from lattice qcd
play

Z c (3900) from lattice QCD based on Y. Ikeda et al., (HAL QCD), - PowerPoint PPT Presentation

Z c (3900) from lattice QCD based on Y. Ikeda et al., (HAL QCD), arXiv.1602.03465(hep-lat). Yoichi IKEDA (RCNP , Osaka Univ.) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) S. Aoki, D. Kawai, T. Miyamoto, K. Sasaki (YITP , Kyoto Univ.)


  1. Z c (3900) from lattice QCD based on Y. Ikeda et al., (HAL QCD), arXiv.1602.03465(hep-lat). Yoichi IKEDA (RCNP , Osaka Univ.) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) S. Aoki, D. Kawai, T. Miyamoto, K. Sasaki (YITP , Kyoto Univ.) T. Doi, T. Hatsuda, T. Iritani (RIKEN) S. Gongyo (Univ. Tours) T. Inoue (Nihon Univ.) Y. Ikeda, N. Ishii, K. Murano (RCNP , Osaka Univ.) H. Nemura (Univ. Tsukuba) Long-term workshop in Realistic Hadron Interactions in QCD (RHIQCD2016) @YITP , Kyoto (Dec. 2, 2016.)

  2. Single hadron spectroscopy from LQCD ★ Low-lying (stable) hadrons on physical point (physical m q ) charm baryons light hadrons ‣ N f =2+1 full QCD, L~3fm ‣ N f =2+1 full QCD, L~3fm ‣ RHQ for charm quark <-- E ππ (k) Aoki et al. (PACS-CS), PRD81 (2010). Namekawa et al. (PACS-CS), PRD84 (2011); PRD87 (2013). • a few % accuracy already achieved for single hadrons • LQCD now can predict undiscovered charm hadrons ( Ξ cc , Ξ * cc , Ω ccc ,...) ➡ Next challenge : multi-hadrons (resonances)

  3. Charmonium-like states ✓ Quark models well describe observed Y (4360) Y (4260) mass spectra at low energies (< 3.8 GeV) ✓ Several states at high energies (> 3.8GeV) Z c (3900) X (3872) are not discovered Godfrey, Isgur, PRD 32 (1985). Barnes, Godfrey, Swanson, PRD 72 (2005). NEW (X, Y, Z) states observed in expt. which are NOT within QM spectrum Non-c bar c structures = exotic hadrons? 0 − + 1 −− 1 + − 0 ++ 1 ++ 2 ++ J P C c ? ¯ c

  4. Charmonium-like states ✓ Quark models well describe observed Y (4360) Y (4260) mass spectra at low energies (< 3.8 GeV) ¯ D ∗ D ∗ ✓ Several states at high energies (> 3.8GeV) ¯ DD ∗ Z c (3900) X (3872) ¯ are not discovered DD Godfrey, Isgur, PRD 32 (1985). Barnes, Godfrey, Swanson, PRD 72 (2005). NEW (X, Y, Z) states observed in expt. which are NOT within QM spectrum Non-c bar c structures = exotic hadrons? 0 − + 1 −− 1 + − 0 ++ 1 ++ 2 ++ J P C All X, Y, Z states are found above 3.8 GeV ✓ Lowest open charm threshold (D bar D) is 3.75 GeV ✓ All new states embedded in two-meson continuum (D bar D, D bar D*, D bar *D*,...) ✓ Channel coupling could be a key to investigate X, Y, Z states u u ? ? c c ¯ c ¯ d ¯ ¯ Our target : charmonium-like Z c (3900) c d

  5. What is Z c (3900)? e + π ? π M π J/ ψ Y (4260) J/ ψ e − BESIII Coll., PRL110, 252001, (2013). Belle Coll., PRL110, 252002, (2013). u ? c • Z c (3900) is observed in π ± J/ ψ invariant mass ¯ ¯ d c • Minimal quark content : 4 quarks (c bar c u bar d) • M ~ 3900, Γ ~ 60 MeV when Breit-Wigner resonance assumed • spin-parity: J PC =1 +- by PWA BESIII Coll., PRL112 (2014), talik in MENU2016

  6. Structure of Z c (3900)? Expt. status • Peak just above D bar D* threshold found in π J/ ψ invariant mass • J P =1 + <--> s-wave π J/ ψ - D bar D* dynamics ‣ Decay rate of Z c (3900) Γ ( Z c (3900) ! ¯ DD ∗ ) Γ ( Z c (3900) ! π J/ ψ ) ' 6 . 2 BESIII Coll., PRL112 (2014). ( η c ρ ) ( πψ 0 ) ¯ π J/ ψ DD ∗

  7. Structure of Z c (3900)? Expt. status • Peak just above D bar D* threshold found in π J/ ψ invariant mass • J P =1 + <--> s-wave π J/ ψ - D bar D* dynamics ‣ Decay rate of Z c (3900) Γ ( Z c (3900) ! ¯ DD ∗ ) Γ ( Z c (3900) ! π J/ ψ ) ' 6 . 2 BESIII Coll., PRL112 (2014). ( η c ρ ) ( πψ 0 ) ¯ π J/ ψ DD ∗ ★ Structure of Z c (3900) from models • Tetraquark? u c Maiani et al. (2013). ¯ ¯ c d • J/ ψ + π cloud, D bar D* molecule? Voloshin (2008), u Nieves et al. (2011), c c ¯ c ¯ ¯ c d + many others u • Threshold kinematical e ff ect? ¯ c c Chen et al. (2013), Swanson (2015). ¯ d

  8. Structure of Z c (3900)? Expt. status • Peak just above D bar D* threshold found in π J/ ψ invariant mass • J P =1 + <--> s-wave π J/ ψ - D bar D* dynamics ‣ Decay rate of Z c (3900) Γ ( Z c (3900) ! ¯ DD ∗ ) Γ ( Z c (3900) ! π J/ ψ ) ' 6 . 2 BESIII Coll., PRL112 (2014). ( η c ρ ) ( πψ 0 ) ¯ π J/ ψ DD ∗ ★ Structure of Z c (3900) from models ➡ poor information on interactions • Tetraquark? u ★ LQCD simulations for Z c (3900) c Maiani et al. (2013). ¯ ¯ c d • J/ ψ + π cloud, D bar D* molecule? Voloshin (2008), u Nieves et al. (2011), c c ¯ c ¯ ¯ c d + many others u • Threshold kinematical e ff ect? ¯ c c Chen et al. (2013), Swanson (2015). ¯ d

  9. Contents Brief introduction to Z c (3900) How to study Z c (3900) on the lattice? Coupled-channel interactions for Z c (3900) in I G (J PC )=1 + (1 +- ) Structure of Z c (3900) ? u c ¯ ¯ d c Z c (3900) Comparison with experimental data D bar D* = 3872 Summary channel coupling π J/ ψ = 3232

  10. How to study Z c (3900) on the lattice? ✦ Conventional approach: LQCD spectrum ➡ identify all relevant W n (L) (n=0,1,2,3,...) cu ¯ d ]( τ ) | W n ⇥ = e − W n τ � 0 | Φ [ c ¯ u c ¯ ¯ c d c ¯ d u ¯ c ¯ d u c ¯ c

  11. How to study Z c (3900) on the lattice? ✦ Conventional approach: LQCD spectrum ➡ identify all relevant W n (L) (n=0,1,2,3,...) cu ¯ d ]( τ ) | W n ⇥ = e − W n τ � 0 | Φ [ c ¯ u c ¯ ¯ c d c ¯ d u ¯ c ✓ No positive evidence for Z c (3900) in J PC =1 +- ¯ d u c S. Prelovsek et al., PLB 727, 172 (2013). ¯ c S.-H. Lee et al., PoS Lattice2014 (2014). S. Prelovsek et al., PRD91, 014504 (2015).

  12. How to study Z c (3900) on the lattice? ✦ Conventional approach: LQCD spectrum ➡ identify all relevant W n (L) (n=0,1,2,3,...) cu ¯ d ]( τ ) | W n ⇥ = e − W n τ � 0 | Φ [ c ¯ u c ¯ ¯ c d c ¯ d u ¯ c ✓ No positive evidence for Z c (3900) in J PC =1 +- ¯ d u c S. Prelovsek et al., PLB 727, 172 (2013). ¯ c S.-H. Lee et al., PoS Lattice2014 (2014). S. Prelovsek et al., PRD91, 014504 (2015). ★ Why is the peak observed in expt.? • broad resonance? threshold e ff ect? ➡ To understand expt. signals for exotics from QCD is very challenging

  13. Why is resonance study so hard? lattice QCD l a t t i c e s p e c exotic hadrons t r o s ~ resonances c o p y

  14. Why is resonance study so hard? lattice QCD l a t h a t d r o n i s c a c t t e r i n g e s p many thresholds e c exotic hadrons t r σ o s ~ resonances c o p y W complex W p o l e Key is coupled-channel hadronic interactions

  15. How to extract hadron interactions? lattice QCD ✓ exotics, molecules hadron interaction faithful to S-matrix ★ single channel scattering δ ( W ) X � 0 | Φ ( τ ) Φ † (0) | 0 ⇥ = A n e − W n τ π / 2 n W space ❖ Lüscher’s formula Lüscher, NPB354 (1991). X ‣ finite V spectrum --> phase shift δ (W n ) k n cot � ( k n ) = 4 ⇡ 1 Euclidean time X L 3 ~ p 2 m − k 2 m ∈ Z 3 n

  16. Problem in coupled-channel scattering lattice QCD ✓ exotics, molecules hadron interaction faithful to S-matrix ★ coupled-channel scattering δ 1 ( W ) δ 2 ( W ) η ( W ) X � 0 | Φ ( τ ) Φ † (0) | 0 ⇥ = A n e − W n τ n W W W ➡ coupled-channel Lüscher’s formula elastic region: W --> δ (W) inelastic region: W --> δ 1 (W), δ 2 (W), η (W) --> find W(L 1 )=W(L 2 )=W(L 3 ) ➡ assumptions about interactions or K-matrices necessary...

  17. Problem in coupled-channel scattering lattice QCD ✓ exotics, molecules hadron interaction faithful to S-matrix ★ coupled-channel scattering δ 1 ( W ) δ 2 ( W ) η ( W ) X � 0 | Φ ( τ ) Φ † (0) | 0 ⇥ = A n e − W n τ n W W W ➡ coupled-channel Lüscher’s formula elastic region: W --> δ (W) inelastic region: W --> δ 1 (W), δ 2 (W), η (W) --> find W(L 1 )=W(L 2 )=W(L 3 ) ➡ assumptions about interactions or K-matrices necessary... ★ indicate more information mandatory to solve coupled-channel scatterings ➡ What can we measure in addition to temporal correlations?

  18. HAL QCD approach “potential” as representation of S-matrix ✦ HAL QCD approach: extract energy-independent interaction kernel ➡ measure spatial correlation as well as temporal correlation X p x, � ) Φ † (0) | 0 ⇥ = r ) e − W n τ � 0 | ⇥ 1 ( ⌅ x + ⌅ r, � ) ⇥ 2 ( ⌅ A n ⇤ n ( ⌅ Z 1 Z 2 n Ishii, Aoki, Hatsuda, PRL99, 02201 (2007). space Aoki, Hatsuda, Ishii, PTP123, 89 (2010). X Ishii et al,(HAL QCD), PLB712, 437(2012). ~ r X Euclidean time

  19. HAL QCD approach “potential” as representation of S-matrix ✦ HAL QCD approach: extract energy-independent interaction kernel ➡ measure spatial correlation as well as temporal correlation X p x, � ) Φ † (0) | 0 ⇥ = r ) e − W n τ � 0 | ⇥ 1 ( ⌅ x + ⌅ r, � ) ⇥ 2 ( ⌅ A n ⇤ n ( ⌅ Z 1 Z 2 n Ishii, Aoki, Hatsuda, PRL99, 02201 (2007). space Aoki, Hatsuda, Ishii, PTP123, 89 (2010). X Ishii et al,(HAL QCD), PLB712, 437(2012). ~ r X Euclidean time ★ Nambu-Bethe-Salpeter wave functions: ψ n (r) ‣ NBS wave functions outside interactions --> Helmholtz equation ⇣ r 2 + ~ ⌘ k 2 ➡ S-matrix n ( ~ r ) = 0 ( | ~ r | > R ) n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend