lattice qcd analysis of charmed tetraquark candidates
play

Lattice QCD analysis of charmed tetraquark candidates Yoichi Ikeda - PowerPoint PPT Presentation

Lattice QCD analysis of charmed tetraquark candidates Yoichi Ikeda (RCNP , Osaka University) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) S. Aoki, T. Aoyama, Y. Akahoshi, K. Sasaki, T. Miyamoto (YITP , Kyoto Univ.) T. Doi, T. M. Doi, S.


  1. Lattice QCD analysis of charmed tetraquark candidates Yoichi Ikeda (RCNP , Osaka University) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) S. Aoki, T. Aoyama, Y. Akahoshi, K. Sasaki, T. Miyamoto (YITP , Kyoto Univ.) T. Doi, T. M. Doi, S. Gongyo, T. Hatsuda, T. Iritani (RIKEN) Y. Ikeda, N. Ishii, K. Murano, H. Nemura (RCNP , Osaka Univ.) T. Inoue (Nihon Univ.) International Molecule-type Workshop “Frontiers in Lattice QCD and related topics” April 15 - April 26 2019, Yukawa Institute for Theoretical Physics, Kyoto University

  2. Single hadron spectroscopy from LQCD ★ Low-lying hadrons on physical point (physical m q ) charm baryons light-quark sector ‣ N f =2+1 full QCD, L~3fm ‣ N f =2+1 full QCD, L~3fm ‣ RHQ for charm quark <-- E ππ (k) Aoki et al. (PACS-CS), PRD81 (2010). Namekawa et al. (PACS-CS), PRD84 (2011); PRD87 (2013). ✓ a few % accuracy already achieved for single hadrons ✓ LQCD now can predict undiscovered charm hadrons ( Ξ ( * )cc , Ω ccc ,...) ➡ Next challenge in spectroscopy : hadron resonances

  3. Our target Z c (3900) Hadron resonances • Particle data group http://www-pdg.lbl.gov/ • Most hadrons are consistent with qqq / qq bar quantum number (non-trivial) • Only 10% is stable, others are unstable (resonances) and some can be fake.. • Understanding hadron resonances from QCD is important issue in hadron physics

  4. Tetraquark candidate Z c (3900) e + π Y(4260) • Expt. observations π M π J/ ψ Z c (3900) J/ ψ e - Y(4260) 3-body decay ‣ e + + e - --> Y(4260) --> π + Z c (3900) ➡ π +/- + J/ ψ BESIII Coll., PRL110 (2013). see also Belle Coll., PRL110 (2013). u ? c ( η c ρ ) ( πψ 0 ) ¯ ¯ c d ¯ π J/ ψ DD ∗ • peak in π +/- J/ ψ invariant mass (minimal quark content cc bar ud bar <--> tetraquark?) • M ~ 3900, Γ ~ 60 MeV (Breit-Wigner, Flatte) --> just above D bar D* threshold • J PC =1 +- is most probable <--> couple to s-wave meson-meson states

  5. Tetraquark candidate Z c (3900) ★ structure of Z c (3900) studied by models genuine resonance D bar D* molecule tetraquark J/ ψ + π atom u u c c c ¯ c ¯ ¯ ¯ d ¯ c d c Nieves et al.(‘11) + many others Maiani et al.(‘13) Voloshin(‘08) conclusion not achieved kinematical origin ➡ poor information on interactions D bar D* threshold e ff ect ★ LQCD simulations for Z c (3900) u ¯ c c ¯ d Chen et al.(‘14), Swanson(‘15)

  6. Z c (3900) on the lattice ✦ Conventional approach: temporal correlation ➡ identify all relevant W n (L) (n=0,1,2,3,...) cu ¯ cu ¯ X d ] † (0) | 0 i = A n e − W n t h 0 | [ c ¯ d ]( t )[ c ¯ variational method u c ¯ ¯ c d D bar D* ✓ No positive evidence for Z c (3900) in J PC =1 +- (observed spectrum consistent with scat. states) π J/ ψ S. Prelovsek et al., PLB 727 (2013), PRD91 (2015). S.-H. Lee et al., PoS Lattice2014 (2014). ★ Why is the peak observed in expt.? ‣ (broad) resonance? threshold e ff ect? ★ How can we find resonance in LQCD data?

  7. Strategy for studies of resonances from LQCD Conventional approach lattice QCD h 0 | Φ ( x ) Φ † (0) | 0 i = A 1 e − W 1 τ + A 2 e − W 2 τ + · · · (W 1 , W 2 , ... are eigen-energies) e.g., 4-quark operator Φ ( x ) = ¯ q ( x )¯ q ( x ) q ( x ) q ( x ) hadron scattering many thresholds σ ( W ) W hadron resonances ★ Resonance energy does NOT correspond to eigen-energy ★ Resonances are embedded into coupled-channel scattering states ➡ Resonance energy is determined from pole of coupled-channel S-matrix

  8. Strategy for studies of resonances from LQCD ( Resonance search through scattering observable ) lattice QCD hadron interactions (faithful to S-matrix) u ¯ c scattering theory c ¯ d contents • hadron interactions & HAL QCD method • strategy to find resonance pole hadron resonances • coupled-channel scattering • LQCD results about Z c (3900) • summary

  9. Hadronic interactions from LQCD hadronic correlation function r, t ) � 2 ( ~ 0 , t ) J † ( t = 0) | 0 i C (2) ( ~ r, t ) ⌘ h 0 | � 1 ( ~ X X r ) e − W n t = A n � n ( ⇥ ~ x n X t • Energy eigenvalue W n (L) (outside interactions) • NBS (Nambu-Bethe-Salpeter) wave function ψ n (r) [ ψ n (r) --> sin( k n r + δ (k n )) / k n r ] C.D. Lee et al., NPB619 (2001). Finite Volume Method Lüscher’s finite volume formula ‣ W n (L) --------> phase shift k n cot � ( k n ) = 4 ⇡ 1 X Lüscher’s formula L 3 p 2 m − k n 2 ~ Lüscher, Nucl. Phys. B354, 531 (1991). m ∈ Z 3 q q m 2 m 2 1 + k 2 2 + k 2 W n = n + n

  10. Hadronic interactions from LQCD hadronic correlation function r, t ) � 2 ( ~ 0 , t ) J † ( t = 0) | 0 i C (2) ( ~ r, t ) ⌘ h 0 | � 1 ( ~ X X r ) e − W n t = A n � n ( ⇥ ~ x n X t • Energy eigenvalue W n (L) (outside interactions) • NBS (Nambu-Bethe-Salpeter) wave function ψ n (r) [ ψ n (r) --> sin( k n r + δ (k n )) / k n r ] HAL QCD Method Finite Volume Method ‣ ψ n (r) --> 2PI kernel ( ψ = φ + G 0 U ψ ) ‣ W n (L) --------> phase shift --> phase shift, binding energy, ... Lüscher’s formula Lüscher, Nucl. Phys. B354, 531 (1991). Ishii, Aoki, Hatsuda, PRL 99, 022001 (2007). Ishii et al. [HAL QCD], PLB 712, 437 (2012). ➡ di ffi cult with coupled-channel problems

  11. Challenge in hadron scatterings ★ Excited scattering states become noise when determining W 0 even in single-channel scatterings C (2) ( t ) = b 0 e − W 0 t + b 1 e − W 1 t + · · · → b 0 e − W 0 t ( t > t ∗ ) − single hadron 2-body system D + D bar ψ ’(2S) D bar + D* Δ ~ 500 MeV J/ ψ + π δ E J/ ψ (1S) t* ~ Δ -1 t* ~ δ E -1 ★ Sophisticated methods is necessary! talk by T. Doi (Thu.) see for BB systems, Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

  12. (single-channel) HAL QCD method -- potential as a representation of S-matrix -- • The scattering states do exist, and we should tame the scattering states ➡ time-dependent HAL QCD method Ishii [HAL QCD], PLB 712 (2012). ✓ define energy-independent potential U(r,r’) Z r 0 U ( ~ r 0 ) n ( ~ r 0 ) = ( E n − H 0 ) n ( ~ r ) d ~ r, ~ c i t s a l e r ) ¯ n X r 0 ) ≡ r 0 ) U ( ~ r, ~ ( E n − H 0 ) n ( ~ n ( ~ i n<n th ch2 ➡ All elastic states share the same potential U(r,r’) c i t s U ψ 0 = (E 0 -H 0 ) ψ 0 a l e U ψ 1 = (E 1 -H 0 ) ψ 1 ch1 · · · ✓ derive U(r,r’) from time-dependent Schrödinger-type eq. @ 2 1 ✓ − @ ◆ Z r 0 U ( ~ r 0 ) R ( ~ r 0 , t ) = @ t + R ( ~ r, t ) d ~ r, ~ @ t 2 − H 0 4 m � 2 � R ( ~ r, t ) = C (2) ( ~ r, t ) / C (1) ( t ) r ) e − ( W 0 − 2 m ) t + b 1 1 ( ~ r ) e − ( W 1 − 2 m ) t + · · · = b 0 0 ( ~

  13. (single-channel) HAL QCD method -- potential as a representation of S-matrix -- • The scattering states do exist, and we should tame the scattering states ➡ time-dependent HAL QCD method Ishii [HAL QCD], PLB 712 (2012). ✓ define energy-independent potential U(r,r’) Z r 0 U ( ~ r 0 ) n ( ~ r 0 ) = ( E n − H 0 ) n ( ~ r ) d ~ r, ~ c i t s a l e r ) ¯ n X r 0 ) ≡ r 0 ) U ( ~ r, ~ ( E n − H 0 ) n ( ~ n ( ~ i n<n th ch2 ➡ All elastic states share the same potential U(r,r’) c i t s U ψ 0 = (E 0 -H 0 ) ψ 0 a l e U ψ 1 = (E 1 -H 0 ) ψ 1 ch1 · · · ✓ derive U(r,r’) from time-dependent Schrödinger-type eq. @ 2 1 ✓ − @ ◆ Z r 0 U ( ~ r 0 ) R ( ~ r 0 , t ) = @ t + R ( ~ r, t ) d ~ r, ~ @ t 2 − H 0 4 m r ) e − ( W 0 − 2 m ) t + b 1 1 ( ~ r ) e − ( W 1 − 2 m ) t + · · · R ( ~ r, t ) = b 0 0 ( ~ ➡ Scat. states are no more contamination than signal ( t* ~ (E ch2 - E ch1 ) -1 )

  14. How can we find resonances? reaction plane If we have complete set of expt. data, S ( ` ) ( W ) partial wave analysis ‣ cross sections (d σ /d Ω ) ‣ spin polarization observables ‣ etc. identity theorem Pole of S-matrix is uniquely determined + analyticity of S-matrix bound state (1st sheet) Im[ z ] ‣ pole position --> binding energy 1st sheet ‣ residue --> coupling to scattering state Re[ z ] resonance (2nd sheet) bound ‣ analytic continuation onto 2nd sheet ‣ pole position --> resonance energy resonance ‣ residue --> coupling to scat. state, partial decay 2nd sheet

  15. Strategy to search for complex poles on the lattice Resonance pole from lattice QCD r, t ) � 2 ( ~ 0 , t ) J † ( t = 0) | 0 i S ( ` ) ( W ) h 0 | � 1 ( ~ X ~ x X r ) e − W n t = A n n ( ~ X n t ❖ coupled-channel Lüscher’s formula ➡ W n (L) --> δ 1 (W n ), δ 2 (W n ), η (W n ) W Im[ z ] δ 1 (W) δ 2 (W) η (W) 1st sheet M th Re[ z ] W W W bound ( coupled-channel scattering di ffi cult ) resonance ‣ δ 1 (W n ), δ 2 (W n ), η (W n ) <-- W n (L 1 ) = W n (L 2 ) = W n (L 3 ) 2nd sheet

  16. Coupled-channel HAL QCD method ✦ measure relevant NBS wave function --> channel is defined X 2 ( ~ 0 , t ) J † (0) | 0 i = p h 0 | � a r, t ) � a A n a r ) e − W n t Z a 1 Z a 1 ( ~ x + ~ n ( ~ 2 n see for full details, Aoki et al. (HAL QCD), PRD87 (2013); Proc. Jpn. Acad., Ser. B, 87 (2011). ★ define coupled-channel potential using ψ a (r) Z r 2 + ( ~ ⇣ n ) 2 ⌘ r ) = 2 µ a X k a a r 0 U ab ( ~ r 0 ) b r 0 ) n ( ~ n ( ~ d ~ r, ~ b ★ coupled-channel potential U ab (r,r’): ch3 S( W<ch3 ) • U ab (r,r’) is faithful to coupled-channel S-matrix ch2 U (2x2) • U ab (r,r’) is energy independent (until new threshold opens) • Non-relativistic approximation is not necessary ch1 • U ab (r,r’) contains all 2PI contributions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend