review on lattice muon g 2 hvp calculation
play

Review on Lattice Muon g-2 HVP Calculation Kohtaroh Miura (GSI - PowerPoint PPT Presentation

Introduction Challenges and Progresses Discussion Summary and Conclusions Review on Lattice Muon g-2 HVP Calculation Kohtaroh Miura (GSI Helmholtz-Instute Mainz) Lattice 2018, 36th International Symposium on Lattice Field Theory, Michigan


  1. Introduction Challenges and Progresses Discussion Summary and Conclusions Review on Lattice Muon g-2 HVP Calculation Kohtaroh Miura (GSI Helmholtz-Instute Mainz) Lattice 2018, 36th International Symposium on Lattice Field Theory, Michigan State University USA, 22 − 28 July 2018

  2. Introduction Challenges and Progresses Discussion Summary and Conclusions Hadron Vaccum Polarization (HVP) Contribution to Muon g - 2 γ µ µ HAD ˆ Π( Q 2 )

  3. Introduction Challenges and Progresses Discussion Summary and Conclusions a exp . vs. a SM µ µ a contrib . × 10 10 SM contribution Ref. µ QED [5 loops] 11658471 . 8951 ± 0 . 0080 [Aoyama et al ’12] HVP-LO (pheno.) 692 . 6 ± 3 . 3 [Davier et al ’16] 694 . 9 ± 4 . 3 [Hagiwara et al ’11] 681 . 5 ± 4 . 2 [Benayoun et al ’16] 688 . 8 ± 3 . 4 [Jegerlehner ’17] HVP-NLO (pheno.) − 9 . 84 ± 0 . 07 [Hagiwara et al ’11] [Kurz et al ’11] HVP-NNLO 1 . 24 ± 0 . 01 [Kurz et al ’11] HLbyL 10 . 5 ± 2 . 6 [Prades et al ’09] Weak (2 loops) 15 . 36 ± 0 . 10 [Gnendiger et al ’13] SM tot [0.42 ppm] 11659180 . 2 ± 4 . 9 [Davier et al ’11] [0.43 ppm] 11659182 . 8 ± 5 . 0 [Hagiwara et al ’11] [0.51 ppm] 11659184 . 0 ± 5 . 9 [Aoyama et al ’12] Exp [0.54 ppm] 11659208 . 9 ± 6 . 3 [Bennett et al ’06] Exp − SM 28 . 7 ± 8 . 0 [Davier et al ’11] 26 . 1 ± 7 . 8 [Hagiwara et al ’11] 24 . 9 ± 8 . 7 [Aoyama et al ’12] | NoNewPhys × 10 10 ≃ 720 ± 7, a LO-HVP µ FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm

  4. Introduction Challenges and Progresses Discussion Summary and Conclusions Really a exp . � = a SM µ ? µ

  5. Introduction Challenges and Progresses Discussion Summary and Conclusions Motivation HVP in Phenomenology The HVP in Pheno. is: � ∞ Q 2 Π( Q 2 ) = ˆ Im Π( s ) ds 0 s ( s + Q 2 ) π � ∞ = ( Q 2 / ( 12 π 2 )) ds R had ( s ) s ( s + Q 2 ) , 0 with R-ratio [right fig. Jegerlehner EPJ-Web2016] given by R had ( s ) ≡ σ ( e + e − → had . ) , 4 πα 2 ( s ) / ( 3 s ) where the systematics is challenging to control(next talk). Some tension among experiments in σ ( e + e − → π + π − ) . Requirement for Lattice QCD: Independent cross-check of Hadronic Vauccum Polarization Contribution to muon g-2 ( a HVP µ ), Permil-Level determination of a HVP w.r.t. FNAL/J-PARC expr. µ

  6. Introduction Challenges and Progresses Discussion Summary and Conclusions Motivation HVP in Phenomenology The HVP in Pheno. is: � ∞ Q 2 Π( Q 2 ) = ˆ Im Π( s ) ds 0 s ( s + Q 2 ) π � ∞ = ( Q 2 / ( 12 π 2 )) ds R had ( s ) s ( s + Q 2 ) , 0 with R-ratio [right fig. Jegerlehner EPJ-Web2016] given by R had ( s ) ≡ σ ( e + e − → had . ) , 4 πα 2 ( s ) / ( 3 s ) where the systematics is challenging to control(next talk). Some tension among experiments in σ ( e + e − → π + π − ) . Requirement for Lattice QCD: Independent cross-check of Hadronic Vauccum Polarization Contribution to muon g-2 ( a HVP µ ), Permil-Level determination of a HVP w.r.t. FNAL/J-PARC expr. µ

  7. Introduction Challenges and Progresses Discussion Summary and Conclusions Objective in This Work Hadron Vacuum Polarization (HVP): d 4 x e iQx � j µ ( x ) j ν ( 0 ) � Π µν ( Q ) = � = ( Q µ Q ν − δ µν Q 2 )Π( Q 2 ) , j µ = 2 u γ µ u − 1 3 ¯ d γ µ d − 1 s γ µ s + 2 3 ¯ 3 ¯ 3 ¯ c γ µ c + · · · . γ Leading-Order(LO) HVP Contr. to Muon g-2: µ µ HAD = ( α/π ) 2 � ∞ dQ 2 ω ( Q 2 / m 2 µ )ˆ a LO-HVP Π( Q 2 ) , µ 0 ˆ Π( Q 2 ) = Π( Q 2 ) − Π( 0 ) . 20000 Π l (Q 2 ) x 10 10 15000 HVP Time-Moments: 10000 Π( Q 2 ) = � ˆ n = 1 Q 2 n Π n , µ ) ^ ω (Q 2 /m 2 5000 d n ˆ Π( Q 2 ) x 2 ν ) n + 1 � ( − ˆ Π n = 1 Q 2 → 0 = � ( 2 n + 2 )! � j µ ( x ) j µ ( 0 ) � . � (m µ /2) 2 x n ! ( dQ 2 ) n � 0 0 0.02 0.04 0.06 0.08 Q 2 GeV 2

  8. Introduction Challenges and Progresses Discussion Summary and Conclusions Access to Deep IR: Pade and Time-Moment Rep. Model Independent Approximants Pade Approximant For Q 2 < Q 2 cut , lattice HVP data are fitted to A 2 Q 2 + · · · ˆ Π( Q 2 ) = 1 + B 2 Q 2 + · · · . (1) � ∞ Q 2 The dispersion relation ˆ Π( Q 2 ) = Im Π( s ) ds is seen as so-called 0 s ( s + Q 2 ) π Stieltjes Integral [Aubin et.al., PRD2012] , which guarantees a finite conversion radius. Time-Momentum Representation (TMR) For Q 2 < Q 2 uv - cut , define [Bernecker and Meyera, EPJA2011] , 3 � � sin[ Qt / 2 ] � 2 � 1 Π( Q 2 ) = ˆ � t 2 � 1 − � j i ( t ) j i ( 0 ) � . (2) Qt / 2 3 t i = 1 The momentum Q is Continuous . The Sine-Cardinal sin[ Qt / 2 ] / ( Qt / 2 ) accounts for a pediodic feature of lattice correlators � j i ( t ) j i ( 0 ) � .

  9. Introduction Challenges and Progresses Discussion Summary and Conclusions Access to Deep IR: Pade and Time-Moment Rep. Model Independent Approximants Pade Approximant For Q 2 < Q 2 cut , lattice HVP data are fitted to A 2 Q 2 + · · · ˆ Π( Q 2 ) = 1 + B 2 Q 2 + · · · . (1) � ∞ Q 2 The dispersion relation ˆ Π( Q 2 ) = Im Π( s ) ds is seen as so-called 0 s ( s + Q 2 ) π Stieltjes Integral [Aubin et.al., PRD2012] , which guarantees a finite conversion radius. Time-Momentum Representation (TMR) For Q 2 < Q 2 uv - cut , define [Bernecker and Meyera, EPJA2011] , 3 � � sin[ Qt / 2 ] � 2 � 1 Π( Q 2 ) = ˆ � t 2 � 1 − � j i ( t ) j i ( 0 ) � . (2) Qt / 2 3 t i = 1 The momentum Q is Continuous . The Sine-Cardinal sin[ Qt / 2 ] / ( Qt / 2 ) accounts for a pediodic feature of lattice correlators � j i ( t ) j i ( 0 ) � .

  10. Introduction Challenges and Progresses Discussion Summary and Conclusions Example of TMR 20000 time-moment rep. Π ud (Q 2 ) x 10 10 lattice data 15000 10000 µ ) ^ ω (Q 2 /m 2 5000 (m µ /2) 2 0 0 0.05 0.1 0.15 0.2 Q 2 [GeV 2 ] Figure: From BMW Ensemble ( a = 0 . 064 fm) used in PRD2017 and PRL2018.

  11. Introduction Challenges and Progresses Discussion Summary and Conclusions Table of Contents Introduction 1 Challenges and Progresses 2 Large Distance Systematics Continuum Extrapolation SIB/QED Corrections Discussion 3 Comparisons Lattice QCD Combined with Phenomenology Summary and Conclusions 4

  12. Introduction Challenges and Progresses Discussion Summary and Conclusions Table of Contents Introduction 1 Challenges and Progresses 2 Large Distance Systematics Continuum Extrapolation SIB/QED Corrections Discussion 3 Comparisons Lattice QCD Combined with Phenomenology Summary and Conclusions 4

  13. Introduction Challenges and Progresses Discussion Summary and Conclusions Multi-Exponential Fits [HPQCD PRD2017] Left: HPQCD PRD2017, vector-current correlator with ud-quarks and a fit line t > t ∗ : G ud ( t , t ∗ ) = G ud data ( t < t ∗ ) or ( G fit ( t > t ∗ ) + G ππ ( t > t ∗ )) , where t ∗ ∈ [ 0 . 5 , 1 . 5 ] fm . Multi( N = 5)-Exponential Ansatz are adopted and ρ -meson dominates. Right: From a slide of Van de Water at Mainz Workshop 2018. Diagrams in effective theory to correct missing effects in the fits. Taste-spliting and finite volume corrections are also taken account.

  14. Introduction Challenges and Progresses Discussion Summary and Conclusions Multi-Exponential Fits [FNAL/HPQCD/MILC Preliminary] a~0.15 fm ensemble with 9362 configurations 900 800 a~0.15 fm (997 configurations) a~0.15 fm (7746 configurations) G data (t<t*) + G fit (t>t*)+ G ππ (t>t*) average of upper and lower bounds 800 700 HVP a µ 700 10 a µ 600 10 600 500 500 0 1 2 3 4 5 400 * (fm) 1 2 3 t t* or t cut (fm) Left: The t ∗ dependence of � α � 2 � ∞ dQ 2 ω ( Q 2 / m 2 µ, ud ( t ∗ ) = µ ) FT [ G ud ( t , t ∗ ) , Q 2 ] with Pade . a LO-HVP (3) π 0 get stable at larger t ∗ . For t ∗ � 2 fm, low-(used in With high-statistics, a LO-HVP µ, ud PRD2017) and high-statistics are consistent. Right: The high-statistics in the left-panel is compared with Bounding Method (next page).

  15. Introduction Challenges and Progresses Discussion Summary and Conclusions Bounding [BMW PRD2017 and PRL2018] 1.0e-01 The connected-light correlator C ud ( t ) loses 1.0e-02 signal for t > 3 fm . To control statistical error, 1.0e-03 consider C ud ( t > t c ) → C ud up / low ( t , t c ) , where 1.0e-04 C ud up ( t , t c ) = C ud ( t c ) ϕ ( t ) /ϕ ( t c ) , C l (t) 1.0e-05 C ud low ( t , t c ) = 0 . 0 , 1.0e-06 with ϕ ( t ) = cosh[ E 2 π ( T / 2 − t )] , 1.0e-07 and E 2 π = 2 ( M 2 π + ( 2 π/ L ) 2 ) 1 / 2 . 1.0e-08 1.0e-09 Similarly, C disc ( t ) → C disc up / low ( t , t c ) , 0 1 2 3 4 t fm − C disc up ( t > t c ) = 0 . 1 C ud ( t c ) ϕ ( t ) /ϕ ( t c ) , − C disc low ( t > t c ) = 0 . 0 . Figure shows 3 By construction, C ud ( t ) = 5 1 � � � j ud x , t ) j ud ( � ( 0 ) � , C ud , disc ( t , t c ) ≤ C ud , disc ( t ) ≤ C ud , disc i i ( t , t c ) . 9 3 up low � i = 1 x by BMW Ensemble with a = 0 . 078 [fm] used in PRD2017/PRL2018.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend