the full four flavour contribution for leptons
play

The full four-flavour contribution for leptons 2.0e-12 1.8e-12 a - PowerPoint PPT Presentation

Using analytical continuation for a hvp Karl Jansen in collaboration with Xu Feng, Shoji Hashimoto, Grit Hotzel, Marcus Petschlies, Dru Renner Status of standard a hvp calculation Analytical continuation Example of a hvp


  1. Using analytical continuation for a hvp µ Karl Jansen in collaboration with Xu Feng, Shoji Hashimoto, Grit Hotzel, Marcus Petschlies, Dru Renner • Status of standard a hvp calculation µ • Analytical continuation • Example of a hvp µ • Conclusion

  2. The full four-flavour contribution for leptons 2.0e-12 1.8e-12 a udsc • fit function: 1.6e-12 e 1.4e-12 a µ ( m PS , a ) = A + B m 2 P S + C a 2 1.2e-12 0 0.05 0.1 0.15 0.2 0.25 • maximal twist: only O ( a 2 ) effects 7.0e-08 6.5e-08 • full analysis of short distance singularities a udsc 6.0e-08 µ → O ( a ) -improvement not spoiled 5.5e-08 5.0e-08 0 0.05 0.1 0.15 0.2 0.25 3.8e-06 a udsc 3.4e-06 τ 3.0e-06 2.6e-06 0 0.05 0.1 0.15 0.2 0.25 GeV 2 � m 2 � PS

  3. Light contribution at the physical point 6.0e-08 • modified method 5.0e-08 4.0e-08 a ud µ 3.0e-08 • standard method N f = 2 result 2.0e-08 a = 0 . 086fm, L = 2 . 8fm a = 0 . 078fm, L = 1 . 9fm a = 0 . 078fm, L = 2 . 5fm 1.0e-08 a = 0 . 078fm, L = 3 . 7fm a = 0 . 061fm, L = 1 . 9fm Preliminary a = 0 . 061fm, L = 2 . 9fm 0.0e+00 0 0.05 0.1 0.15 0.2 0.25 m 2 � GeV 2 � PS • VMD and polynomial fit

  4. Light contribution at the physical point 6.0e-08 • modified method 5.0e-08 4.0e-08 a ud µ 3.0e-08 • standard method N f = 2 result, standard fit N f = 2 result, Pad´ e fit 2.0e-08 a = 0 . 086fm, L = 2 . 8fm a = 0 . 078fm, L = 1 . 9fm a = 0 . 078fm, L = 2 . 5fm 1.0e-08 a = 0 . 078fm, L = 3 . 7fm a = 0 . 061fm, L = 1 . 9fm Preliminary a = 0 . 061fm, L = 2 . 9fm 0.0e+00 0 0.05 0.1 0.15 0.2 0.25 m 2 � GeV 2 � PS • VMD and polynomial fit • compare to Pad´ e fit

  5. Light contribution all leptons 1.6e-12 1.4e-12 a ud a hvp = 1 . 50(03)10 − 12 ( N f = 2 + 1 + 1) e e 1.2e-12 1.0e-12 0 0.05 0.1 0.15 0.2 0.25 6.2e-08 = 5 . 67(11)10 − 8 ( N f = 2 + 1 + 1) a hvp a ud 5.8e-08 µ µ 5.4e-08 5.0e-08 0 0.05 0.1 0.15 0.2 0.25 2.8e-06 a hvp = 2 . 66(02)10 − 6 ( N f = 2 + 1 + 1) a ud τ τ 2.4e-06 2.0e-06 0 0.05 0.1 0.15 0.2 0.25 GeV 2 � m 2 � PS • fit function: a µ ( m PS , a ) = A + B m 2 P S + C a 2

  6. Alternative method: analytic continuation Compute HVP function via analytic continuation x � Ω | T { J E x e i� ¯ ν ( � Π( K 2 )( K µ K ν − δ µν K 2 ) = dt e ωt � d 3 � k� x, t ) J E � µ ( � 0 , 0) }| Ω � • J E µ ( X ) electromagentic current • K = ( � k, − iω ) , � k spatial momentum, ω the photon energy (input) Advantage • vary ω → smooth values for K 2 = − ω 2 + � k 2 • can cover space-like and time-like momentum regions • can reach small momenta and even zero momentum • important condition: − K 2 = ω 2 − � k 2 < M 2 V , or ω < E vector • make use of ideas: (Ji; Meyer; X. Feng, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki, E. Shintani; G. de Divitiis, R. Petronzio, N. Tantalo)

  7. Fourier Transformation • spatial transformation ν/ 2) � J E x e − i� C µν ( � ν ( � k ( � x + a ˆ µ/ 2 − a ˆ x, t ) J E k, t ) = � µ ( � 0 , 0) � , � • discrete momenta � k = (2 π/L ) � n • transformation in time k, ω ; T ) = � T/ 2 Π µν ( � ¯ t = − T/ 2 e ω ( t + a ( δ µ,t − δ ν,t ) / 2) C µν ( � k, t ) ¯ = ¯ Π µν ( � Π( K 2 ; T ) K µ K ν − δ µν K 2 � � k, ω ; T )

  8. Correlators for different polarization Re[C µ � (k,t)], n=(1,0,0), { µ, � }={x,x} Im[C µ � (k,t)], n=(1,0,0), { µ, � }={x,t} 0.03 0.02 0.15 0.01 0.1 0 0.05 -0.01 0 -0.02 -0.05 -0.03 Re[C µ � (k,t)], n=(1,0,0), { µ, � }={y,y} Re[C µ � (k,t)], n=(1,0,0), { µ, � }={t,t} 0.008 0.15 0.006 0.1 0.004 0.05 0.002 0 -0.05 0 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 t/a t/a • very different behaviour for different µ, ν • all lead to the same result eventually

  9. Truncating of timeline transformation: introducing a finite size effect • problem for large t : correlator very noisy • truncate time summation: t max = ηT/ 2 ¯ = ¯ Π µν ( � Π( K 2 ; t max ) K µ K ν − δ µν K 2 � � k, ω ; t max ) k, ω ; t max ) = � t max − a ( δ µ,t − δ ν,t ) Π µν ( � e ω ( t + a ( δ µ,t − δ ν,t ) / 2) C µν ( � ¯ k, t ) t = − t max – for each fixed η method correct for T → ∞ - for η � = 1 introduce a finite size effect • for t > t max : describe data by model • Here: – choice of η = 3 / 4 - assume ground state dominance for large t ( ρ -mass)

  10. Demonstration of � n indpendence 2 =0, { µ,ν }={x,x} |n| -0.18 2 =1, { µ,ν }={x,x} |n| 2 =1, { µ,ν }={x,t} Π (0; t max ) |n| -0.2 2 =1, { µ,ν }={y,y} |n| 2 =1, { µ,ν }={t,t} |n| -0.22 2 =2, { µ,ν }={x,x} |n| 2 =2, { µ,ν }={x,y} |n| -0.24 2 =2, { µ,ν }={x,t} |n| 2 =2, { µ,ν }={z,z} Π (0; t max ) + Π (0; t > t max ) |n| -0.18 2 =2, { µ,ν }={t,t} |n| 2 =3, { µ,ν }={x,x} |n| -0.2 2 =3, { µ,ν }={x,y} |n| 2 =3, { µ,ν }={x,t} |n| -0.22 2 =3, { µ,ν }={t,t} |n| averaged result -0.24 0 1 2 3 2 |n| n 2 • increasing error for larger �

  11. HVP from analytical continuation 2 , t > t max ) -0.2 2 , t max ) + � (K |n| 2 =1, { µ, � }={x,x} |n| 2 =1, { µ, � }={x,t} -0.25 |n| 2 =1, { µ, � }={y,y} |n| 2 =0, { µ, � }={x,x} � (K |n| 2 =1, { µ, � }={t,t} conventional 2 , t > t max ) -0.2 2 , t max ) + � (K |n| 2 =2, { µ, � }={x,x} |n| 2 =2, { µ, � }={x,y} |n| 2 =3, { µ, � }={x,x} |n| 2 =2, { µ, � }={x,t} |n| 2 =3, { µ, � }={x,y} -0.25 |n| 2 =2, { µ, � }={z,z} |n| 2 =3, { µ, � }={x,t} � (K |n| 2 =2, { µ, � }={t,t} |n| 2 =3, { µ, � }={t,t} -0.4 0 0.4 0.8 -0.4 0 0.4 0.8 K 2 [GeV 2 ] K 2 [GeV 2 ] • different � n lead to consistent results • agreement with standard calculation • however, larger errors for | � n | > 0

  12. Direct application to vacuum polarization function parameters: ( a ≈ 0 . 078 fm , V = (2 . 5fm) 3 ) 0.05 0.025 0.02 0.04 0.015 0.03 0.01 0.02 Π R D 0.005 0.01 0 -0.005 0 -0.01 Experiment + DR lattice Π R , N f =2+1+1, t max /a=31 -0.01 lattice Adler function, N f =2+1+1, t max /a=31 -0.015 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Q 2 / GeV 2 Q 2 / GeV 2 renormalized HVP Adlerfunction dispersion relation (Jegerlehner, 2011)

  13. Mixed time-momentum representation (A. Francis, B. J¨ ager, H. Meyer, H. Wittig) renormalized HVP Adlerfunction

  14. Application to a hvp µ split in three pieces • a (1) directly calculable from lattice data µ ¯ � � = α 2 � K 2 m 2 K 2 a (1) 1 dK 2 ρ (Π( K 2 ) − Π(0)) max K 2 f µ ¯ m 2 m 2 0 µ V • a (2) only large momentum region: model dependence µ ¯ � � m 2 = α 2 � ∞ K 2 a (2) 1 max dK 2 ρ (Π( K 2 ) − Π( K 2 K 2 f max )) µ ¯ K 2 m 2 m 2 µ V • a (3) correction term µ ¯ � � m 2 = α 2 � ∞ K 2 a (2) 1 max dK 2 (Π( K 2 ρ K 2 f max ) − Π(0)) µ ¯ K 2 m 2 m 2 µ V

  15. Comparison to standard calculation without FSE 7e-08 6e-08 hvp (t max ) 5e-08 a µ 4e-08 a=0.079 fm, T/2=L=1.6 fm a=0.079 fm, T/2=L=1.9 fm 3e-08 a=0.079 fm, T/2=L=2.5 fm a=0.063 fm, T/2=L=1.5 fm 7e-08 hvp (t > t max ) a=0.063 fm, T/2=L=2.0 fm with FSE 6e-08 hvp (t max ) + a µ 5e-08 4e-08 a µ 3e-08 0 0.1 0.2 0.3 0.4 0.5 2 [GeV 2 ] m π • open symbols: analytic continuation • filled symbols: standard calculation of a ¯ µ • averaged over different polarizations

  16. Summary • Tested idea of analytical continuation method for computing vacuum polarisation function – validity of method demonstrated in 1305.5878 – method works in practise • difficulties – had to truncate time summation → induce finite size effect – method only applicable for momenta K < K max with − K 2 = ω 2 = k 2 < M 2 V (or, ω < E V ) – larger errors than standard method for | � n | > 0 • my present view on analytical continuation method: it is clearly an alternative for cross-checking, e.g. a hvp – µ – it allows a direct comparison to the hvp function from phenomenological analysis of data – maybe method of choice at physical pion mass? • can it be applied to describe momentum dependence where value at Q 2 = 0 is not available?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend