test of factorization for the long distance effects
play

Test of factorization for the long-distance effects B Kl + l from - PowerPoint PPT Presentation

Test of factorization for the long-distance effects B Kl + l from charmonium in NAKAYAMA Katsumasa(Nagoya Univ.) Shoji Hashimoto (KEK) for JLQCD Collaboration 2018/7/27@Lattice2018,East Lansing,MI,USA Photo: Granada,, Spain, 2017 2


  1. Test of factorization for the long-distance effects B → Kl + l − from charmonium in NAKAYAMA Katsumasa(Nagoya Univ.) Shoji Hashimoto (KEK) for JLQCD Collaboration 2018/7/27@Lattice2018,East Lansing,MI,USA Photo: Granada,, Spain, 2017

  2. 2 ◉ Motivation B → Kl + l − (1): is a penguin-induced FCNC process. dB ( B → Kµ + µ − ) /dq 2 (10 − 7 GeV − 2 ) 0.7 (GIM and loop suppressed) Form factors + CKM + Others Form factors only 0.6 LHCb14 ( B + ) LHCb14 ( B 0 ) 0.5 Babar12 CDF11 0.4 Belle09 0.3 (2): Anomaly in experiments: 0.2 q 2 < m 2 0.1 J/ ψ J/ ψ ψ (2 S ) 0 0 5 10 15 20 25 q 2 (GeV) 2 [D. Du et al. (Fermilab, MILC) 1510.02349] Question: Are the long distance l contributions understood? J/ ψ → We calculate the corresponding l O i B K amplitude by lattice formulation.

  3. 3 ◉ Charmonium resonance contributions ◇ We focus on the charmonium resonance contribution, 2 ! 10 H e ff = G F X X us V ub C i O u cs V cb C i O c ( V ∗ i + V ∗ i ) − V ∗ ts V tb C i O i √ 2 i =1 i =3 l J/ ψ O c 1 = ( s i γ µ P − c j ) ( c j γ µ P − b i ) O c 2 = ( s i γ µ P − c i ) ( c j γ µ P − b j ) l O i B K → and induce the long-distance contribution, O c O c 1 2 which is often estimated by the factorization approximation. How good is that?

  4. 4 ◉ . decay amplitudes K → π ◇ We’d like to calculate the B decay amplitudes on the lattice. Formulation is analogous to the decay amplitudes. K → π ll [N.H. Christ et al. (RBC, UKQCD) 1507.03094] Z q 2 � d 4 x h π ( p ) | T [ J µ (0) H e ff ( x )] | K ( k ) i � A µ = Z q 2 � d 4 x h K ( k ) | T [ J µ (0) H e ff ( x )] | B ( p ) i � A µ = ◇ The amplitude is calculable from the integration of 4pt-func. Z t J + T b I µ ( T a , T b , p , k ) ' d t H t J − T a t B t H t J t K (0 ⌧ t J � T a  t J + T b ⌧ t K )

  5. 5 ◉ . decay amplitudes B → Kl + l − J/ ψ J/ ψ I µ = + O i O i B K B K t H t J t J t H Z t J + t b Z t J dt H dt H t J t J − t a ◇ Charm loop would produce contributions like Z 0 Z ∞ 1 1 dte ω t e − E J/ ψ t = dte ω t e E J/ ψ t = ω − E J/ ψ ω + E J/ ψ 0 −∞ q ◇ If we focus on , part is dominant. t H < t J m 2 J/ ψ − q 2 ∼ E J/ ψ ω =

  6. 6 ◉ Divergence of the amplitude? [N.H. Christ et al. (RBC, UKQCD) 1507.03094] K → π l + l − ◇ case π +( t J < t H ) I µ = O i K π t H t J Z ∞ d E ρ ( E ) h π ( k ) | J µ (0) | E, p i h E, p | H e ff (0) | K ( p ) i ⇣ 1 � e [ E K ( p ) − E ] T a ⌘ I µ ( T a , T b , p , k ) = � 2 E E K ( p ) � E 0 +( t J < t H ) ◇ Some intermediate states have lower than E K E → Since , they must be subtracted. T a → ∞ (e.g. ) K → π , ππ , πππ

  7. 7 ◉ Divergence of the amplitude? B → Kl + l − ◇ case J/ ψ +( t J < t H ) I µ = O i B K t H t J Z ∞ d E ρ S ( E ) h K ( k ) | J µ (0) | E, p i h E, p | H e ff (0) | B ( p ) i ⇣ 1 � e [ E B ( p ) − E ] T a ⌘ I µ ( T a , T b , p , k ) = � 2 E E B ( p ) � E 0 +( t J < t H ) ◇ We restrict ourselves in the setup of m B < m J/ ψ + m K → No divergence.

  8. 8 ◉ Amplitude of . B → Kl + l − ◇ From the integration of the 4-point correlators, we can T a,b → ∞ extract the amplitude after taking limit. Z ∞ d E ρ S ( E ) h K ( k ) | J µ (0) | E, p i h E, p | H e ff (0) | B ( p ) i ⇣ 1 � e [ E B ( p ) − E ] T a ⌘ I µ ( T a , T b , p , k ) = � 2 E E B ( p ) � E 0 +( t J < t H ) Z q 2 � d 4 x h K ( k ) | T [ J µ (0) H e ff ( x )] | B ( p ) i � A µ = A µ ( q 2 ) = − i T a,b →∞ I µ ( T a , T b , k , p ) lim

  9. 9 B → Kl + l − Factorization method for decay

  10. 10 ◉ Factorization ◇ Assume that l ong-range gluon exchange can be ignored J/ ψ O i B K J/ ψ h i ∝ h i h i O i B K 1 h P K | J cc (Vol . ) h 0 | J cc ν J cc ν ( c i γ µ P − c i )( s j γ µ P − b j ) | P B i = µ | 0 ih P K | V µ | P B i → We test this assumption by the lattice calculation.

  11. 11 ◉ Factorization ◇ Factorizable operator and non-factorizable operator O F O NF Fierz trans. O (1) O c = ( c i γ µ P − c i ) ( s j γ µ P − b j ) 1 = ( s i γ µ P − c j ) ( c j γ µ P − b i ) F O c 2 = ( s i γ µ P − c i ) ( c j γ µ P − b j ) ⇣ ⌘ O (8) c i [ T a ] ij γ µ P − c j ( s k [ T a ] kl γ µ P − b l ) NF = 2 = 1 3 O (1) + 2 O (8) 1 = O (1) O c O c F NF F O (8) ◇ Assume non-factrizable operator could be ignored NF 2 = 1 → We test this assumption . O c 3 O c 1 O l 2 ' � 0 . 7 O l K → ππ case, Lattice. 1 [P.A. Boyle et al. (RBC, UKQCD) 1212.1474]

  12. 12 Preliminary result for the test of factorization

  13. 13 ◉ Current status L 3 × T ( × L s ) meas am uds a − 1 β am c am b am π aE K am J/ ψ am B 4.17 2.453(4) 32 3 × 64( × 12) 100 0.04 0.44037 0.68808 0.2904(5) 0.3513(16) 1.2809(6) 1.063(11) 4.35 3.610(9) 48 3 × 96( × 8) 90 0.025 0.27287 0.66619 0.1986(3) 0.2378(9) 0.8701(3) 0.9543(19) GeV ' 714 MeV ' 855 MeV ' 3 . 14 GeV ' 3 . 44 GeV Mobius domain-wall fermion with 2+1 flavor. ◆ up and down mass same as strange. m b = { (1 . 25 2 ) m c , (1 . 25 4 ) m c } ◆ “ bottom” mass: k = 2 π ◆ F inite momentum in the final state L (1 , 0 , 0)

  14. 14 ◉ 4-point functions Z d 3 x d 3 y e − i q · y D E φ K ( t K , k ) T [ J µ ( t J , y ) H e ff ( t H , x )] φ † Γ (4) µ ( t H , t J , p , k ) = B (0 , p ) 1.0 × 10 -12 1.0 × 10 -14 B K 1.0 × 10 -16 t J t H 1.0 × 10 -18 log(Correlator) J/ ψ K B 1.0 × 10 -20 1.0 × 10 -22 1.0 × 10 -24 B K t H t J 1.0 × 10 -26 1.0 × 10 -28 v1v1 cv1 abs 1.0 × 10 -30 0 5 10 15 20 25 30 35 40 45 t H t/a

  15. 15 ◉ 4-point functions 2 O 1 h i h O c 1 i 1.0 = 1.5 h i h i (Fact . ) Factorization 1 0.5 0 0 5 10 15 20 25 t H J/ ψ O 1 B

  16. 16 ◉ 4-point functions 1 O 1 /O 2 O c 2 /O c h O c 2 i 1 1/3 0.8 h O c 1 i 0.6 1 Factorization = 3 0.4 0.2 0 -0.2 -0.4 -0.6 0 5 10 15 20 25 t H J/ ψ B

  17. 17 ◉ TO DO LIST We have to… (1):determine the lattice renormalization constants. (2):Input more realistic momentum. k ≥ 2 π E B (0) = E J/ ψ ( k ) + E K ( k ) L (2 , 2 , 2) (3):Input or extrapolate to physical quark masses. (4):complete integration and taking limit to extract amplitude.

  18. 18 ◉ Summary B → Kl + l − ◇ We study the charmonium contribution to by the lattice calculation. K → π l + l − ◇ is calculable analogously to for B → Kl + l − lighter bottom quark masses. ◇ As a first step, we study the accuracy of the factorization approximation. ◇ Sizable non-factorizable contribution is observed in the long-distance region.

  19. 19 ◉ 4 point functions a = 2 . 45 GeV 2 O 1 1.0 1.5 1 Factorization 0.5 0 0 2 4 6 8 10 12 14 16 18 t H

  20. 20 ◉ 4 point functions a = 2 . 45 GeV 1 O c 2 /O c O 1 /O 2 1 1/3 0.8 0.6 Factorization 0.4 0.2 0 -0.2 -0.4 -0.6 0 2 4 6 8 10 12 14 16 18 t H

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend