mac lane and factorization
play

Mac Lane and Factorization Walter Tholen York University, Toronto - PowerPoint PPT Presentation

Mac Lane and Factorization Walter Tholen York University, Toronto June 15, 2006 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 1 / 31 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 2 /


  1. Mac Lane and Factorization Walter Tholen York University, Toronto June 15, 2006 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 1 / 31

  2. Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 2 / 31

  3. Saunders Mac Lane Duality for groups Bulletin for the American Mathematical Society 56 (1950) 485-516 Saunders Mac Lane Groups, categories and duality Bulletin of the National Academy of Sciences USA 34 (1948) 263-267) Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 3 / 31

  4. Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 4 / 31

  5. Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 5 / 31

  6. A brief history of factorization systems Mac Lane 1948/1950 Isbell 1957/1964 Quillen 1967 Kennison 1968 Kelly 1969 Ringel 1970/1971 Freyd-Kelly 1972 Pumpl¨ un 1972 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 6 / 31

  7. � � � � � (Orthogonal) factorization system ( E , M ) in C u · · � ! w � e m e ⊥ m � � � · · v E = ⊥ M , M = E ⊥ (FS*1&2) (FS*3) C = M · E (FS*1) Iso · E ⊆ E , M · Iso ⊆ M (FS*2) E⊥M (FS*3) C = M · E Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 7 / 31

  8. � � � � � � � � � Alternative characterization (FS1) Iso ⊆ E ∩ M (FS2) E · E ⊆ E , M · M ⊆ M (FS3) C = M · E (FS3!) · � � e � m � � � � � � � � � · · ! ∼ = � � � � � � � � � � � e ′ m ′ � · Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 8 / 31

  9. � � � � � � � � � Strict factorization system ( E 0 , M 0 ) in C (M. Grandis) (SFS1) Id ⊆ E 0 ∩ M 0 (SFS2) E 0 · E 0 ⊆ E 0 , M 0 · M 0 ⊆ M 0 (SFS3) C = M 0 · E 0 (SFS3!) · � � e � m � � � � � � � � � · · 1 � � � � � � � � � � � e ′ m ′ � · Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 9 / 31

  10. � � � � � � � “Higher” Justification: u u · · · · e f � e g F ( u,v ) � � F ( f ) g F ( g ) f m f � m g � · � · · · v v F : C 2 → C ⇐ ⇒ Eilenberg-Moore structure w.r.t. � 2 fs ⇐ ⇒ normal pseudo-algebras (Coppey, Korostenski-Tholen) sfs ⇐ ⇒ strict algebras (Rosebrugh-Wood) Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 10 / 31

  11. � � � � � � � Free structure on C 2 1 u u � · · · · · g = g f f d � · � · � · · · v v 1 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 11 / 31

  12. � � � � � � � � � � � � � � Mac Lane again: (BC1) Id ⊆ E 0 ∩ M 0 (BC2) E 0 · E 0 ⊆ E 0 , M 0 · M 0 ⊆ M 0 (BC3) C = M 0 · Iso · E 0 j � · (BC3!) · � e � � m � � � � � � � � � · · 1 1 � � � � � � � � � � � e ′ � · m ′ � · j ′ (BC4) E 0 · Iso ⊆ Iso · E 0 , Iso · M 0 ⊆ M 0 · Iso � ≤ 1 � � (BC5) � M 0 · E 0 ∩ C ( A, B ) Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 12 / 31

  13. � � � ∼ � im φ � � G/ ker φ � � � � � � � � � � � � � � � � � G H φ epimorphisms from G ⇐ ⇒ congruences on G Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 13 / 31

  14. Set ∼ objects: sets X with equivalence relation ∼ X morphisms: [ f ] : X → Y x ∼ X x ′ = ⇒ f ( x ) ∼ Y f ( x ′ ) f ∼ g ⇐ ⇒ ∀ x ∈ X : f ( x ) ∼ Y g ( x ) Z ⊆ X, Z ∼ = { x ∈ X | ∃ z ∈ Z : x ∼ X z } closure: compare: Freyd completion! Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 14 / 31

  15. � � ∼ � f ( X ) ∼ X f � � � � � [1 X ] � � � � � � � � � � � � � � � Y X [ f ] x ∼ f x ′ f ( x ) ∼ Y f ( x ′ ) ⇐ ⇒ { [1 X ] : X → X ′ | ∼ X ⊆∼ X ′ } E 0 = → Y ] | Z ∼ = Z } M 0 = { [ Z ֒ [ f ] mono ⇐ ⇒ ∼ X = ∼ f f ( X ) ∼ = Y [ f ] epi ⇐ ⇒ Epi ∩ Mono = Iso ⇐ ⇒ AC ⇐ ⇒ Epi = SplitEpi Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 15 / 31

  16. Grp ∼ = Grp ( Set ∼ ) groups with a congruence relation homomorphisms “up to congruence” Grp ∼ → Set ∼ reflects isos Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 16 / 31

  17. � � � � Top ∼ ⇒ U = U ∼ U ⊆ X open = bifibration Set ∼ � f ( X ) ∼ X f � � � � � � � � � � � � � � � � � � � [ f ] X Y ⇒ ∃ V ⊆ Y open : U = f − 1 ( V ) Mac Lane: U ⊆ X f open ⇐ ⇒ ∃ V = V ∼ ⊆ Y : U = f − 1 ( V ) open Better: U ⊆ X f open ⇐ Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 17 / 31

  18. � � � � � � � Double factorization system ( E 0 , J , M 0 ) in C u . · � ! w e � � k � ( e, j ) ⊥ ( k, m ) · · ! z � m j � � � · · v (DFS*1) Iso · E 0 ⊆ E 0 , Iso · J · Iso ⊆ J , M 0 · Iso ⊆ M 0 (DFS*2) ( E 0 , J ) ⊥ ( J , M 0 ) (DFS*3) C = M 0 · J · E 0 ( E , M ) fs ⇐ ⇒ ( E , Iso , M ) dfs Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 18 / 31

  19. � � � � � � � � � � � � � � Alternative characterization (DFS1) Iso ⊆ E 0 ∩ J ∩ M 0 (DFS2) E 0 · E 0 ⊆ E 0 , J · J ⊆ J , M 0 · M 0 ⊆ M 0 (DFS3) C = M 0 · J · E 0 j � · (DFS3!) · � e � � m � � � � � � � � · � · ! ∼ ! ∼ = = � � � � � � � � � � � � · e ′ � m ′ · j ′ (DFS4) J · M 0 ⊆ M 0 · J , E 0 · J ⊆ J · E 0 ( E 0 , J , M 0 ) dfs ⇐ ⇒ ( E 0 , M 0 · J ) , ( J · E 0 , M 0 ) fs J = J · E 0 ∩ M 0 · J Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 19 / 31

  20. � � � � � � � � � � � � � � � Free structure on C 3 : 1 1 u � · u · · · · · g 1 g 1 f 1 f 1 f 1 vf 1 1 1 v � · � · v � · � · · = · g 2 g 2 g 2 f 2 f 2 wf 2 � · � · � · � · · · w w 1 1 Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 20 / 31

  21. ( E 0 , J , M 0 ) ↔ ( E , W , M ) E 0 = E ∩ W E = J · E 0 J = E ∩ M W = M 0 · E 0 M 0 = M ∩ W M = M 0 · J 0 W is closed under retracts in C 3 . When does W have the 2-out-of-3 property? Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 21 / 31

  22. Double factorization systems “Quillen factorization ( E 0 , J , M 0 ): systems” ( E , W , M ): ( E 0 , M 0 · J ) , ( J · E 0 , M 0 ) fs, ( E ∩ W , M ) , ( E , M ∩ W ) fs, E 0 · M 0 ⊆ M 0 · E 0 , W has 2-out-of-3 property. ej ∈ E 0 , e ∈ E 0 , j ∈ J = ⇒ j iso, jm ∈ M 0 , m ∈ M 0 , j ∈ J = ⇒ j iso . (Pultr-Tholen 2002) Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 22 / 31

  23. � � � � � � Weak factorization system ( E , M ) in C u · · � w � e m e � m � � v � · · E = � M , M = E � (WFS*1&2) (WFS*3) C = M · E (WFS*1a) gf ∈ E , g split mono = ⇒ f ∈ E (WFS*1b) gf ∈ M , f split epi = ⇒ g ∈ M (WFS*2) E � M (WFS*3) C = M · E Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 23 / 31

  24. (Mono,Epi) in Set (Mono,Mono � ) wfs in C with binary products and enough injectives ( � , SplitEpi) wfs in every lextensive category C Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 24 / 31

  25. fs = ⇒ wfs E � : closed under composition, direct products stable under pullback, intersection If C has kernelpairs, any of the following will make a wfs ( E , M ) an fs: M closed under any type of limit gf ∈ M , g ∈ M = ⇒ f ∈ M gf = 1 , g ∈ M = ⇒ f ∈ M Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 25 / 31

  26. Cassidy-H´ ebert-Kelly (1985), Ringel (1970) C finitely well-complete reflective subcategories of C (full, replete) factorization systems ( E , M ) with gf ∈ E , g ∈ E = ⇒ f ∈ E ( E , M ) �→ F ( M ) = { B ∈ C | ( B → 1) ∈ M} Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 26 / 31

  27. � � F reflective in finitely complete C with reflection ρ : 1 → R ∀ f : A → B : � R − 1 (Iso) , Cart( R, ρ ) � ( E , M ) = fs ⇐ ⇒ ( ρ A ,f ) � � A − − − − → RA × RB B ∈ E ⇒ F = F ( M ) semilocalization E stable under pb along M ⇐ E stable under pullback F = F ( M ) localization ⇐ ⇒ Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 27 / 31

  28. C with 0 ( E , M ) torsion theory ⇐ ⇒ ( E , M ) fs , E , M have 2-out-of-3 property F ( M ) = { B | ( B → 0) ∈ M} T ( E ) = { A | (0 → A ) ∈ E} Walter Tholen (York University, Toronto) Mac Lane and Factorization CT2006 28 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend