lepton flavour universality tests with heavy flavour
play

Lepton Flavour Universality tests with heavy flavour decays at LHCb - PowerPoint PPT Presentation

Lepton Flavour Universality tests with heavy flavour decays at LHCb Including a new R K result Thibaud Humair, on behalf of the LHCb collaboration Moriond EW 2019 22 nd March, 2019 LFU and b s + decays 1 ' 5 P SM from DHMV


  1. Lepton Flavour Universality tests with heavy flavour decays at LHCb Including a new R K result Thibaud Humair, on behalf of the LHCb collaboration Moriond EW 2019 22 nd March, 2019

  2. LFU and b → s ℓ + ℓ − decays 1 ' 5 P SM from DHMV Yesterday: in talk presented by Carla Marin: 0.5 LHCb Run 1 analysis ◮ Interesting discrepancies in b → s µ + µ − decays, JHEP02(2016)104 0 e.g. angular analysis of B 0 → K ∗ 0 µ + µ − ; ◮ But hadronic uncertainties make interpretation 0.5 − difficult. 1 − 0 5 10 15 2 q 2 [GeV / c 4 ] Today: test L epton F lavour U niversality in b → s ℓ + ℓ − decays, in particular R K and R K ∗ : R K ( ∗ ) = B ( B → K ( ∗ ) µ + µ − ) SM = 1 . 0 B ( B → K ( ∗ ) e + e − ) ◮ All hadronic effects cancel in these ratios: immaculate theoretical predictions of R K ( ∗ ) ◮ Small deviation from 1, O (1%), due to radiative corrections ( EPJC76(2016)440 ). ⇒ any statistically significant deviation of these ratios from 1 is a sign of N ew P hysics. 2 Thibaud Humair

  3. Previous R K ∗ and R K results (LHCb Run 1 data) 2 . 0 R K ∗ 0 LHCb: JHEP08(2017)055 LHCb: PRL113(2014)151601 1 . 5 1 . 0 0 . 5 Belle: PRL103(2009)171801 LHCb BaBar LHCb BaBar: PRD86(2012)032012 Belle 0 . 0 0 5 10 15 20 q 2 [GeV 2 /c 4 ] All LHCb results below SM expectations: − 0 . 074 ± 0 . 036 for 1 . 0 < q 2 < 6 . 0 GeV 2 , ∼ 2 . 6 σ from SM; ◮ R K = 0 . 745 +0 . 090 − 0 . 07 ± 0 . 03 for 0 . 045 < q 2 < 1 . 1 GeV 2 , ∼ 2 . 2 σ from SM; ◮ R K ∗ = 0 . 66 +0 . 11 − 0 . 07 ± 0 . 05 for 1 . 1 < q 2 < 6 . 0 GeV 2 , ∼ 2 . 4 σ from SM; ◮ R K ∗ = 0 . 69 +0 . 11 Together with b → s µµ results, R K and R K ∗ constitute an interesting pattern of anomalies, but the significance is still low. 3 Thibaud Humair

  4. Previous R K ∗ and R K results (LHCb Run 1 data) 2 . 0 R K ∗ 0 LHCb: JHEP08(2017)055 LHCb: PRL113(2014)151601 1 . 5 Today: update of the R K measurement in 1 . 1 < q 2 < 6 . 0 GeV 2 1 . 0 In this update: 0 . 5 ◮ The analysis of 2011 and 2012 data is completely re-optimised, Belle: PRL103(2009)171801 LHCb BaBar LHCb BaBar: PRD86(2012)032012 the analysis strategy re-designed; Belle 0 . 0 0 5 10 15 20 ◮ 2015 and 2016 LHCb data are added; q 2 [GeV 2 /c 4 ] ◮ In total, updated analysis uses twice as many B ’s as the previous analysis. All LHCb results below SM expectations: − 0 . 074 ± 0 . 036 for 1 . 0 < q 2 < 6 . 0 GeV 2 , ∼ 2 . 6 σ from SM; ◮ R K = 0 . 745 +0 . 090 LHCb-Paper-2019-009 − 0 . 07 ± 0 . 03 for 0 . 045 < q 2 < 1 . 1 GeV 2 , ∼ 2 . 2 σ from SM; ◮ R K ∗ = 0 . 66 +0 . 11 − 0 . 07 ± 0 . 05 for 1 . 1 < q 2 < 6 . 0 GeV 2 , ∼ 2 . 4 σ from SM; ◮ R K ∗ = 0 . 69 +0 . 11 Together with b → s µµ results, R K and R K ∗ constitute an interesting pattern of anomalies, but the significance is still low. 3 Thibaud Humair

  5. R K measurement at LHCb Need two inputs to measure R K : yields and efficiencies. R K = B ( B + → K + µµ ) B ( B + → K + ee ) = N ( K + µµ ) N ( K + ee ) · ε ( K + ee ) ε ( K + µµ ) Electron and muon tracks very different in LHCb: ◮ Electrons interact with material and emit µ track bremsstrahlung; ◮ worse mass and q 2 resolution; e track ◮ lower reconstruction efficiency. ◮ Better PID and trigger performances for muons. Critical aspect in the analysis: get the electron efficiencies fully under control. 4 Thibaud Humair

  6. R K measurement at LHCb Need two inputs to measure R K : yields and efficiencies. R K = B ( B + → K + µµ ) � B ( B + → K + J /ψ ( µµ )) B ( B + → K + ee ) B ( B + → K + J /ψ ( ee )) N ( K + J /ψ ( µµ )) · N ( K + J /ψ ( ee )) N ( K + µµ ) · ε ( K + J /ψ ( µµ )) ε ( K + ee ) = · N ( K + ee ) ε ( K + µµ ) ε ( K + J /ψ ( ee )) Electron and muon tracks very different in LHCb: ◮ Electrons interact with material and emit µ track bremsstrahlung; ◮ worse mass and q 2 resolution; e track ◮ lower reconstruction efficiency. ◮ Better PID and trigger performances for muons. Critical aspect in the analysis: get the electron efficiencies fully under control. ⇒ use double ratio to cancel out most systematic uncertainties. 4 Thibaud Humair

  7. Efficiency computation Ratio of efficiencies determined with simulation 100 carefully calibrated using control channels (L0Electron) [%] 90 LHCb selected from the data: 80 ◮ Calibration of B + kinematics; 70 60 ◮ Tracking efficiency calibration; 50 40 ε ◮ Particle ID calibration 30 (method described in EPJ T&I(2019)6:1) ; 20 10 ◮ Trigger calibration (right plot); 0 0 2000 4000 6000 8000 10000 ◮ Calibration q 2 and m ( Kee ) resolution. E ( e ) [MeV] T Ratio of efficiencies controlled to an excellent level and checked with alternative samples wherever possible. Measurement of the electron trigger ef- ficiency using B + → J /ψ ( e + e − ) K + Detailed evaluation of systematic uncertainties shows data. uncertainties at each step are < 1% 5 Thibaud Humair

  8. Cross-check 1: r J /ψ in 1D To check efficiencies are correct, check: 1.10 〉 ψ LHCb J/ r J /ψ = B ( B → K + J /ψ ( µµ )) r LHCb-Paper-2019-009 B ( B → K + J /ψ ( ee )) = 1 . 0 , 〈 1.05 / ψ J/ r 1.00 Result: r J /ψ = 1 . 014 ± 0 . 035 ( stat . + syst . ) 0.95 0.90 1000 2000 3000 4000 5000 − ◮ Check that efficiencies are understood as a + min( ( ), ( )) [MeV/ ] p l p l c T T function of any variable: Given expected min( p T ( ℓ + ) , p T ( ℓ − ) spectra, ⇒ differential r J /ψ demonstrates it is the bias expected on RK if deviations are genuine case: r J /ψ is flat for all variables examined. rather than fluctuations is 0 . 1%. 6 Thibaud Humair

  9. Cross-check 2: r J /ψ in 2D ◮ Pick two variables from those that can be used to parametrise the decay in LHCb frame; ◮ Select B + → J /ψ K + events in 2D bins, and compute r J /ψ in each bin: 0.30 ) [rad] 〉 LHCb ψ 4 LHCb J/ 0.25 1.1 simulation r 8 − 3 〈 l 12 / , + 0.20 16 ψ 2 l ( J/ α r 7 rare 0.15 1.0 6 J /ψ 11 0.10 10 1 15 5 14 0.9 0.05 LHCb-Paper-2019-009 9 13 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4.0 4.5 5.0 5.5 − − − × α + + + max( p(l ), p ( l )) ( l , l ) bin number log (max( p(l ), p ( l ))) 10 Flatness of R 2 D J /ψ plots gives confidence that efficiencies are understood over all phase-space. 7 Thibaud Humair

  10. Fit to B + → K + µ + µ − and B + → K + e + e − A single fit to the m ( K + ℓ + ℓ − ) distributions is performed to determine R K from the entire 2011-2016 dataset, taking into account all correlations (LHCb-Paper-2019-009): ) ) 2 2 c LHCb c LHCb 300 Candidates / (7 MeV/ Candidates / (24 MeV/ 100 Data Data 250 Total fit Total fit 80 + → + − + B K e e + 200 → µ + µ − + B K Part. Reco. 60 + → ψ + − + Combinatorial B J/ (e e )K 150 Combinatorial 40 100 N sig ∼ 1940 N sig ∼ 760 20 50 0 0 5200 5300 5400 5500 5600 5000 5500 6000 + µ + µ − + + − 2 m(K ) [MeV/ c ] m(K e e ) [MeV/ c 2 ] Partially reconstructed background shape in B + → K + e + e − taken from simulated B 0 → K ∗ 0 ( K + π − ) e + e − , associated systematic is 1%. 8 Thibaud Humair

  11. R K result with 2011 to 2016 data LHCb-Paper-2019-009 Using 2011 and 2012 LHCb data, R K was: 2.0 K R LHCb R K = 0 . 745 +0 . 090 − 0 . 074 (stat.) ± 0 . 036 (syst.) , 1.5 ∼ 2 . 6 σ from SM ( PRL113(2014)151601 ). 1.0 Adding 2015 and 2016 data, R K becomes: BaBar 0.5 Belle LHCb Run 1 0.0 0 5 10 15 20 2 2 4 q [GeV / c ] 9 Thibaud Humair

  12. R K result with 2011 to 2016 data LHCb-Paper-2019-009 Using 2011 and 2012 LHCb data, R K was: 2.0 K R LHCb R K = 0 . 745 +0 . 090 − 0 . 074 (stat.) ± 0 . 036 (syst.) , 1.5 ∼ 2 . 6 σ from SM ( PRL113(2014)151601 ). 1.0 Adding 2015 and 2016 data, R K becomes: BaBar 0.5 Belle LHCb Run 1 R K = 0 . 846 +0 . 060 − 0 . 054 (stat.) +0 . 016 LHCb Run 1 + 2015 + 2016 − 0 . 014 (syst.) 0.0 0 5 10 15 20 2 q 2 [GeV / c 4 ] ∼ 2 . 5 σ from SM. 9 Thibaud Humair

  13. R K result with 2011 to 2016 data LHCb-Paper-2019-009 Using 2011 and 2012 LHCb data, R K was: 2.0 K R LHCb R K = 0 . 745 +0 . 090 − 0 . 074 (stat.) ± 0 . 036 (syst.) , 1.5 ∼ 2 . 6 σ from SM ( PRL113(2014)151601 ). 1.0 Adding 2015 and 2016 data, R K becomes: BaBar 0.5 Belle LHCb Run 1 R K = 0 . 846 +0 . 060 − 0 . 054 (stat.) +0 . 016 LHCb Run 1 + 2015 + 2016 − 0 . 014 (syst.) 0.0 0 5 10 15 20 2 q 2 [GeV / c 4 ] ∼ 2 . 5 σ from SM. Dominant systematic uncertainties: Fit shape, trigger calibration, B + kinematics. 9 Thibaud Humair

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend