anomalies and deviations in heavy flavour physics
play

Anomalies and deviations in heavy-flavour physics @GreigCowan - PowerPoint PPT Presentation

Anomalies and deviations in heavy-flavour physics @GreigCowan (Edinburgh) Birmingham, Dec 2nd 2015 Introduction to the LHCb experiment b sl + l FCNC decays Lepton (non-)universality CP violation in the beauty + charm


  1. Anomalies and deviations in heavy-flavour physics @GreigCowan (Edinburgh) Birmingham, Dec 2nd 2015

  2. • Introduction to the LHCb experiment • b → sl + l − FCNC decays • Lepton (non-)universality • CP violation in the beauty + charm systems 2 / 60

  3. The LHC https://ideas.lego.com/projects/94885 3 / 60

  4. The LHCb detector 2008 JINST 3 S08005 Covers 4% of solid angle, but accepts 40% of heavy quark production cross section. 4 / 60

  5. A typical LHCb event [2008 JINST 3 S08005] � nPV s � ∼ 2 . 0 σ ( pp → bbX ) ∼ 80 µb � nTracks � ∼ 200 σ ( cc ) ∼ 1500 µb ~ 1 cm b p p HLT2 DiMuon trigger b 5 / 60

  6. Run-1 data sample 2012 (2 fb − 1 @8TeV) ∼ 900 physicists from 64 Efficiency > 93% universities/laboratories in 16 2011 countries. (1 fb − 1 @7TeV) O (100k) bb pairs produced/sec. 2010 LHCb designed to run at lower luminosity than ATLAS/CMS. LHCb tracking/PID is sensitive to pile-up. LHC pp beams are displaced to reduce instantaneous luminosity - stable running conditions. �L� 2011 ∼ 2 . 7 × 10 32 cm − 2 s − 1 �L� 2012 ∼ 4 . 0 × 10 32 cm − 2 s − 1 6 / 60

  7. Searching for New Physics ON-SHELL OFF-SHELL Cannot produce particles Higher energy particles can with mc 2 > E appear virtually in quantum loops → flavour physics NP? History: top quark mass predicted by quark mixing 7 / 60

  8. Rare (FCNC) b -hadron decays 8 / 60

  9. b → s transitions b → s “penguin” decays are loop/CKM suppressed. FCNC can be crucial to finding out where to look for NP. Model independent effective Hamiltonian, where heavy degrees of freedom have been integrated out in short-distance H eff = − 4 G F α e V tb V ∗ � C i O i + C ′ i O ′ � � √ Wilson coefficients, ( C i ). ts i 2 4 π i B 0 → K ∗ (892) 0 µ + µ − O 9 ( ′ ) = [ sγ µ P L ( R ) b ][ lγ µ l ] q 2 ≡ m ( l + l − ) 2 [Blake, Gershon, Hiller, Annu. Rev. Nucl. Part. Sci. 2015] 9 / 60

  10. B 0 → K ∗ (892) 0 µ + µ − [LHCb-PAPER-2015-051] 20 ] 4 2398 ± 57 events, excluding the charmonia. c LHCb 18 / 4 10 2 [GeV 16 � Ω ≡ (cos θ l , cos θ K , φ ) 14 2 3 10 q 12 10 10 2 8 6 10 4 2 0 1 5.2 5.3 5.4 5.5 5.6 5.7 � m ( K + - + - ) [GeV/ c ] 2 µ µ Di-muon final state is experimentally clean signature, but BR ∼ 10 − 7 . P → V V ′ decay, fully described by q 2 ≡ m ( µ + µ − ) 2 and 3 helicity angles. B 0 → K ∗ µ + µ − has rich system of observables (rates, angles, asymmetries) that are sensitive to NP. d 4 Γ[ B 0 → K ∗ 0 µ + µ − ] 11 = 9 � I j ( q 2 ) f j ( � I j → I j for B 0 Ω) , d q 2 d � 32 π Ω j =1 � � � dΓ � � � dΓ d q 2 + d¯ d q 2 + d¯ � � Γ Γ I j + ¯ I j − ¯ � � S j = I j , A j = I j d q 2 d q 2 10 / 60

  11. B 0 → K ∗ (892) 0 µ + µ − [LHCb-PAPER-2015-051] 2 2 c LHCb c LHCb Events / 5.3 MeV/ Events / 10 MeV/ 2 2 1.10 < q 2 < 6.00 GeV / c 4 1.10 < q 2 < 6.00 GeV / c 4 100 100 Describe m ( Kπ ) with Breit-Wigner for P- 50 50 wave and LASS for S- wave K + π − 0 0 5200 5400 5600 0.8 0.85 0.9 0.95 π − µ µ − π − + + + m ( K ) [MeV/ c 2 ] m ( K ) [GeV/ c 2 ] π Events / 0.1 Events / 0.1 LHCb LHCb LHCb Events / 0.1 2 2 2 1.10 < q 2 < 6.00 GeV / c 4 1.10 < q 2 < 6.00 GeV / c 4 1.10 < q 2 < 6.00 GeV / c 4 100 100 100 50 50 50 0 0 0 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -2 0 2 θ θ φ cos cos [rad] l K S i , A i ’s extracted using a max likelihood fit. /c 2 around K ∗ (892) 0 . Example fits in ± 50 MeV For the first time the Kπ S-wave is accounted for. 11 / 60

  12. B 0 → K ∗ (892) 0 µ + µ − : some observables [LHCb-PAPER-2015-051] 1 L 5 F S 0.5 LHCb LHCb 0.8 SM from ABSZ SM from ABSZ 0.6 0 0.4 0.2 S 6 s ≡ 4 S 1 c ≡ F L 3 A FB -0.5 0 0 5 10 15 0 5 10 15 2 2 2 [GeV / 4 ] 2 [GeV / 4 ] q c q c 3 4 A A 0.5 0.5 LHCb LHCb 0 0 + many other observables not shown -0.5 -0.5 0 5 10 15 0 5 10 15 2 2 2 [GeV / 4 ] 2 [GeV / 4 ] q c q c Some observables have physical boundaries ⇒ use Feldman-Cousins for uncertainties. CP -asymmetries consistent with zero, as expected, but some deviations in CP -averaged observables (the S j ’s). 12 / 60

  13. B 0 → K ∗ (892) 0 µ + µ − : the anomaly [LHCb-PAPER-2015-051] “Theoretically clean” observables less dependent on hadronic form factors [Descotes-Genon et al JHEP 05 (2013) 137] . These divide out the hadronic uncertainties to leading order. S j =4 , 5 , 7 , 8 P ′ i =4 , 5 , 6 , 8 = Tension from the 1 fb − 1 LHCb result remains. � F L (1 − F L ) 1 5 ' P LHCb 0.5 SM from DHMV A χ 2 fit to all CP -averaged 0 observables shows a 3 . 4 σ 2 . 8 σ, 3 . 0 σ from SM shift from SM prediction -0.5 -1 0 5 10 15 2 2 [GeV / 4 ] q c 13 / 60

  14. b → sµ + µ − branching fractions lower than predictions B 0 → K ∗ (892) 0 µ + µ − [JHEP 08 (2013) 131] [JHEP 06 (2014) 133 ] [JHEP 06 (2015) 115] [JHEP 09 (2015) 179] Λ b → Λ µ + µ − (Bham) B 0 s → φµ + µ − 14 / 60

  15. Observation of B 0 s → µ + µ − CKM suppressed and helicity suppressed (( m µ /m B ) 2 ). Dominant uncertainty will be B ( B 0 s → µµ ) SM = (3 . 66 ± 0 . 23) × 10 − 9 improved via refined Lattice B ( B 0 → µµ ) SM = (1 . 06 ± 0 . 09) × 10 − 10 QCD calcs. [PRL 112, 101801 (2014)] Sensitive to scalar and pseudoscalar NP couplings, e.g., in MSSM B ∝ (tan β ) 6 d B 0 s → µ + µ − µ + b ✁ W + Z 0 B 0 t s W − s µ − 30 years of effort! f B 0 s → µ + µ − µ + b ✁ X + X 0 B 0 t s W − s µ − 15 / 60

  16. Observation of B 0 s → µ + µ − [CMS + LHCb, Nature 522, 68-72 (2015)] CMS and LHCb (LHC run I) ) 16 2 c Candidates / (40 MeV/ Data Use multi-variate techniques 14 Signal and background to suppress background. → µ µ − 0 + B 12 s − 0 → µ + µ B Results consistent with SM at B 0 3 . 0 σ Combinatorial bkg. 10 Semileptonic bkg. ∼ 2 σ . 8 Peaking bkg. B 0 Constrains S and P s 6 . 2 σ 6 contributions. 4 One to watch during LHC 2 Run-2. 0 5000 5200 5400 5600 5800 2 m [MeV/ c ] − µ + µ 16 / 60

  17. Global fits for Wilson coeffs [Descotes-G et al, arXiv:1510.04239] Other global fits exist! 2D fit with ( C NP , C NP 9 ′ ) floating 9 → 4 . 5 σ deviation from SM Inputs from branching fractions and angular observables from b → sll decays, BR( B → X s γ ), BR( B 0 s → µ + µ − ),. . . . Many fits performed with different subsets of the observables and different theoretical inputs (form factors, power corrections, charm loops). C NP < 0 plays central role explaining many deviations seen in b → sll transitions. 9 Possible Z ′ ? Leptoquarks? [many authors] How well do we understand QCD-effects? [Lyon, Zwicky] 17 / 60

  18. Lepton universality R K ≡ B ( B + → K + µ + µ − ) B ( B + → K + e + e − ) ,. . . 18 / 60

  19. Lepton universality ( B + → K + l + l − ) [PRL 113,151601 (2014)] In the SM only the Higgs boson has non-universal lepton couplings. This results in SM predictions of ∼ unity for various decay-rate ratios. R K ≡ B ( B + → K + µ + µ − ) SM = 1 ± O (10 − 2 ) B ( B + → K + e + e − ) 2 . 6 σ deviation Can be described assuming NP only in b → sµµ . Very interesting given indications of non-SM physics in other b → sµµ FCNC decays and 2 . 4 σ excess in H → τµ at CMS [PLB 749 (2015) 337] . Future: Make similar measurements using other decays - R ( φ ) , R ( K ∗ ) , R (Λ) (Bham). 19 / 60

  20. Lepton universality ( B 0 → D ∗ + lν ) CKM mechanism well tested, but room for NP if coupling more to 3rd generation (e.g., charged Higgs). B-factories already reporting deviation from theoretically clean SM prediction. Form-factors cancel in the ratio. Tree-level int., unlike b → sll FCNC R ( D ∗ ) ≡ B ( B 0 → D ∗ + τν τ ) B ( B 0 → D ∗ + µν µ ) Interesting given hints of non-universality in B + → K + l + l − decays ( R K ) and excl/incl measurements of V ub , V cb . 20 / 60

  21. Lepton universality ( B 0 → D ∗ + lν ) [PRL 115, 111803 (2015)] Very challenging measurement at hadron collider (no beam constraints and large m (GeV /c ) miss backgrounds). 4000 Candidates / (75 MeV) ) 4 9.35 < q 2 < 12.60 GeV 2 /c 4 LHCb /c 2 Candidates / (0.3 GeV B ( τ → µν µ ν τ ) = (17 . 41 ± 0 . 04)% 3000 Signal and normalisation have same final 2000 state particles. Large samples of events, triggering on charm. 1000 Require significant B, D, τ flight distances. Use Pulls 2 -2 0 2 4 6 8 10 isolation MVA. -2 -2 0 2 4 6 8 10 Template fit to kinematic variables → 2 4 m 2 (GeV /c ) miss E * (MeV) µ Candidates / (75 MeV) 4000 2 2 4 9.35 < q < 12.60 GeV /c LHCb 3000 2000 1000 Pulls 10 2 500 1000 1500 2000 2500 -2 10 500 1000 1500 2000 2500 E * (MeV) µ R ( D ∗ ) ≡ B ( B 0 → D ∗ + τν τ ) B ( B 0 → D ∗ + µν µ ) 21 / 60

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend