flavour physics
play

Flavour Physics Martin Bauer, Mainz in Randall-Sundrum Models with - PowerPoint PPT Presentation

Flavour Physics Martin Bauer, Mainz in Randall-Sundrum Models with S.Casagrande, U.Haisch, F.Goertz M.Neubert and T.Pfoh based on arxiv:0807.4537 1 Motivation 2 The minimal Randall-Sundrum (RS) model 3 Flavour Observables 4 Summary &


  1. Flavour Physics Martin Bauer, Mainz in Randall-Sundrum Models with S.Casagrande, U.Haisch, F.Goertz M.Neubert and T.Pfoh based on arxiv:0807.4537

  2. 1 Motivation 2 The minimal Randall-Sundrum (RS) model 3 Flavour Observables 4 Summary & Conclusion

  3. Motivation M Pl • The Hierarchy problem Why is the Higgs mass so much lighter than the Planck scale? f H H H = − | λ f | 2 � � ⇒ ∆ m 2 m 2 f + . . . 8 π 2 LHC

  4. Motivation M Pl • The Hierarchy problem Why is the Higgs mass so much lighter than the Planck scale? f H H H = − | λ f | 2 � � ⇒ ∆ m 2 m 2 f + . . . 8 π 2 LHC s e l c i t r a p M S

  5. Motivation H e r M Pl m e o m n a s y t • The Hierarchy problem e b r e s ! Why is the Higgs mass so much lighter than the Planck scale? f H H H = − | λ f | 2 � � ⇒ ∆ m 2 m 2 f + . . . 8 π 2 LHC s e l c i t r a p M S

  6. Motivation H e r M Pl m e o m n a s y t • The Hierarchy problem e b r e s ! Why is the Higgs mass so much lighter than the Planck scale? f H H H = − | λ f | 2 � � ⇒ ∆ m 2 m 2 f + . . . 8 π 2 LHC • The flavour puzzle Why are the masses of elementary particles so different? s e l c i t r Hamburger fisher boat Queen Mary II a ← → p M up quark top quark S ← →

  7. Geometry Ultraviolet Infrared brane brane S 1 /Z 2 0 φ π d s 2 = e − 2 σ η µν d x ν d x µ − r 2 d φ 2 , σ = kr | φ |

  8. Geometry UV brane IR brane Λ UV ≈ M Pl Λ IR ≈ 1TeV 0 φ π d s 2 = e − 2 σ η µν d x ν d x µ − r 2 d φ 2 ⇒ Λ IR = e − krπ Λ UV

  9. Geometry UV brane IR brane Λ UV ≈ M Pl Λ IR ≈ 1TeV Higgs, Yukawas 0 φ π d s 2 = e − 2 σ η µν d x ν d x µ − r 2 d φ 2 ⇒ Λ IR = e − krπ Λ UV ǫ = Λ IR ≡ e − krπ = M W ≈ 10 − 16 , L = − ln ǫ ≈ 37 Λ UV M Pl ✦ Solves Hierarchy problem due to redshifted Planck mass

  10. Gauge sector UV brane IR brane SU (3) C × SU (2) L × U (1) Y SU (3) C × U (1) EM Higgs, Yukawas 0 φ π Gauge fields are 5D fields (so-called “bulk fields”) Since the extra dimension is compact they are decom- posed into 4D Kaluza-Klein (KK) modes, analogue to QM fields in a potential well

  11. Gauge sector g (1) UV brane IR brane g Higgs, W, Z Yukawas 0 φ π Non flat profiles of KK modes lead d s g (1) to non-diagonal overlap integrals √ √ with fermions and potentially large g s L g s L flavour changing neutral currents s (FCNC’s). d

  12. Fermion sector F ( c q 3 > 0) t R u , d F ( c Q 3 > − 1 / 2) s , c � t L � Q 3 = b L F ( c q 1 < − 1 / 2) 0 φ π d s g (1) Order one parameters c q i control √ √ localization of fermions in the g s L g s L bulk. s d

  13. Fermion sector F ( c q 3 > 0) t R u , d F ( c Q 3 > − 1 / 2) s , c � t L � Q 3 = b L F ( c q 1 < − 1 / 2) 0 φ π F ( c Q 1 ) F ( c s ) d s g (1) 9 parameters c q i chosen in a way √ √ to satisfy 8 conditions g s L g s L { m q i , V us , V cs } . s d F ( c Q 2 ) F ( c d )

  14. Fermion sector - RS GIM The parameters which control the masses of the light quarks suppress potentially dangerous FCNC’s : RS-GIM. F ( c Q 1 ) v h 2 F ( c Q 1 ) Y (5 D ) m d ∼ √ F ( c d ) d � H � Y d v 2 Y eff √ ∼ d F ( c d ) F ( c Q 1 ) F ( c s ) g 2 d s s L F ( c Q 1 ) F ( c d ) F ( c Q 2 ) F ( c s ) g (1) M 2 √ √ KK g s L g s L ∼ g 2 2 m d m s s L s M 2 � 2 � d vY (5 D ) F ( c Q 2 ) F ( c d ) KK d

  15. Flavour Structure • Yukawa matrices ( Y d ) ij can be chosen to be anarchic and of order one: d ) ij ≡ F ( c Q i )( Y d ) (5 D ) ( Y eff F ( c d j ) ij • Hierarchical masses and mixings can be generated by relying on order one parameters only: m q i = O (1) v √ F ( c Q i ) F ( c q i ) 2 F 3 ( c Q 2 ) λ = O (1) F ( c Q 1 ) ρ, ¯ ¯ η = O (1) , F ( c Q 2 ) , A = O (1) F 2 ( c Q 2 ) F ( c Q 3 )

  16. Flavour Structure • Yukawa matrices ( Y d ) ij can be chosen to be anarchic and of order one: d ) ij ≡ F ( c Q i )( Y d ) (5 D ) ( Y eff F ( c d j ) ij • Hierarchical masses and mixings can be generated by relying on order one parameters only: m q i = O (1) v √ F ( c Q i ) F ( c q i ) 2 F 3 ( c Q 2 ) λ = O (1) F ( c Q 1 ) ρ, ¯ ¯ η = O (1) , F ( c Q 2 ) , A = O (1) F 2 ( c Q 2 ) F ( c Q 3 ) ✦ Provides explanation for flavour puzzle!

  17. Flavour in RS � ¯ � � ¯ 1 � L SM + Q i Q j Q i Q j 10 5 Λ 2 CP ✟ ✟ UV 10 4 Λ UV [TeV] 10 3 10 2 10 1 c → u s → d b → d b → s ∆ m s , A s D − ¯ ∆ m K , ǫ K ∆ m d , sin 2 β D SL

  18. Meson Mixing: Neutral Kaons Generically | ǫ K | by a factor O (50) enhanced with respect to | ǫ K | exp = (2 . 23 ± 0 . 01) × 10 − 3 . 3000 randomly chosen RS points with | Y q | < 3 reproducing quark 10 2 masses and CKM parameters with 10 1 χ 2 /dof < 11 . 5 / 10 corresponding 1 to 68% CL 10 � 1 Without Z → b ¯ b constraint 10 � 2 � Ε K � With Z → b ¯ b constraint at 95% CL 10 � 3 Satisfying 95% CL | ǫ K | ∈ [1 . 3 , 3 . 3] · 10 − 3 10 � 4 10 � 5 10 � 6 10 � 7 2 4 6 8 10 M KK � TeV �

  19. Meson Mixing: Neutral D Mesons Very large effects possible in D − ¯ D mixing, including large CP violation. Prediction might be testable at LHCb 12 ) ∗ = � ¯ ( M D D |H ∆ C =2 eff , RS | D � 0.08 = | M D 12 | e 2 iφ D 0.06 D RS � ps � 1 � Experimentally favoured region at 68% CL 0.04 Experimentally favoured region at 95% CL consistent with quark masses, CKM pa- � M 12 rameters, and 95% CL limit 0.02 | ǫ K | ∈ [1 . 3 , 3 . 3] · 10 3 0.00 � 50 0 50 � D � ° �

  20. Meson Mixing: B s Sector In RS model significant corrections to semileptonic CP asymmetry A s SL and S ΨΦ = sin(2 | β s | − 2 φ B s ) consistent with | ǫ K | can arise SL = Γ( ¯ B s → ℓ + X ) − Γ( ¯ B s → ℓ − X ) A s Γ( ¯ B s → ℓ + X ) + Γ( ¯ B s → ℓ + X ) 300 = Im Γ s 12 M 12 200 100 s � SM SM: A s SL = 2 · 10 − 5 , S Ψ φ = 0 . 04 s �� A SL 0 � Experimentally favoured region at 68% CL A SL � 100 Experimentally favoured region at 95% CL � 200 consistent with quark masses, CKM parameters, 95% CL limit � 300 | ǫ K | ∈ [1 . 3 , 3 . 3] · 10 3 � 1.0 � 0.5 0.0 0.5 1.0 S ΨΦ

  21. Flavour in RS RS results for 10 5 m (1) = 3 TeV CP ✟ g ✟ 10 4 Λ UV [TeV] 10 3 10 2 10 1 c → u s → d b → d b → s ∆ m s , A s D − ¯ ∆ m K , ǫ K ∆ m d , sin 2 β D SL

  22. Flavour in RS RS results for 10 5 m (1) = 3 TeV CP ✟ g ✟ ✦ 10 4 ✦ ✪ Λ UV [TeV] 10 3 ✦ 10 2 10 1 c → u s → d b → d b → s ∆ m s , A s D − ¯ ∆ m K , ǫ K ∆ m d , sin 2 β D SL

  23. Summary and Conclusion • Warped extra dimensions offer compelling geometrical explanation of gauge and fermion hierarchy problem, mysteries left unexplained in SM • Flavour-changing tree-level transitions of K and B s mesons particularly interesting as their sensitivity to KK scale extends beyond LHC reach. • Flavour-anarchy models need tuning to survive constraints from CP- violation in kaon sector, which calls for additional flavour structure

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend