lepton flavour violation a phenomenological overview ana
play

Lepton flavour violation: a phenomenological overview Ana M. - PowerPoint PPT Presentation

Lepton flavour violation: a phenomenological overview Ana M. Teixeira Laboratoire de Physique Corpusculaire, LPC Clermont What is ? INVISIBLES 2012 GGI, Firenze, 26 June 2012 Lepton Flavour Violation: LFV@2012 What


  1. Lepton flavour violation: a phenomenological overview Ana M. Teixeira Laboratoire de Physique Corpusculaire, LPC Clermont “What is ν ν ν ?” INVISIBLES 2012 GGI, Firenze, 26 June 2012

  2. Lepton Flavour Violation: LFV@2012 ⋆ ⋆ ⋆ What we do know about Lepton Flavour Violation [experiment] ν α � ν β ◮ Neutral leptons � neutrino oscillations ν α � ν β ν α � ν β θ @ , θ 13 θ 13 θ 13 [ ∆ m 2 3 mixing angles ( U PMNS U PMNS ) - solar, atmospheric, reactor θ ⊙ θ ⊙ θ ⊙ , θ @ θ @ i ] U PMNS ◮ Charged leptons � so far, only upper bounds ... on “possible” observables! LFV process Present bound Future sensitivity LFV process Present bound Future sensitivity 2 . 4 × 10 − 12 10 − 13 BR( µ → eγ ) 4 . 3 × 10 − 12 O (10 − 16( − 18) ) CR( µ − e , Ti) 3 . 3 × 10 − 8 10 − 9 BR( τ → eγ ) 7 × 10 − 13 CR( µ − e , Au) 4 . 4 × 10 − 8 10 − 9 BR( τ → µγ ) O (10 − 16 ) CR( µ − e , Al) 1 . 0 × 10 − 12 O (10 − 16 ) BR( µ → 3 e ) BR( ¯ K 0 4 . 7 × 10 − 12 L → µe ) 2 . 7 × 10 − 8 2 × 10 − 10 BR( τ → 3 e ) BR( B + → K + τµ ) 7 . 7 × 10 − 5 2 . 1 × 10 − 8 8 × 10 − 10 BR( τ → 3 µ ) ... and many others! BR( τ → ℓP ) (2 − 5) × 10 − 3 But a huge experimental commitment! (Y. Kuno’s review) ◮ ◮ ◮ Will cLFV be observed soon? How to accommodate such a signal? Which origin?

  3. A first look at flavours in the SM W ± ¯ ◮ Quark sector: flavour violated by charged current interactions V CKM q i q j ij Observed in many oscillation/decay processes: very good agreement with SM! Little room for “beyond SM” contributions (eg B s → µµ ) SM QFV: Th vs Exp ⇒ strong constraints on “beyond SM” dynamics!

  4. A first look at flavours in the SM W ± ¯ ◮ Quark sector: flavour violated by charged current interactions V CKM q i q j ij Observed in many oscillation/decay processes: very good agreement with SM! ◮ Lepton sector: neutral & charged lepton flavours strictly conserved ⇒ ν α � ν β ⇒ ⇒ Extend the SM to accommodate ν α � ν β ν α � ν β [ SM m ν m ν = “ad-hoc” m ν , U PMNS ] m ν ℓ i ℓ i ℓ i W ± W ± W ± m ν � = 0 m ν � = 0 m ν � = 0 • ∝ U PMNS U PMNS U PMNS • Charged currents violate lepton flavour! αi αi αi ν α = P ν α = P ν α = P i U αi ν i i U αi ν i i U αi ν i ν α ν α ν α γ W − 2 ˛ ˛ m 2 P U ∗ ˛ ˛ νi 10 − 54 ∼ 10 − 54 10 − 54 BR ( µ → eγ ) BR ( µ → eγ ) BR ( µ → eγ ) ∝ µi U ei ˛ ˛ ℓ j ℓ i M 2 SM m ν m ν - cLFV viable?? ˛ ˛ m ν W ˛ ˛ U ∗ ν L U ik jk Viable - yes... but not observable!! ◮ “Observable” cLFV ⇒ New Physics in the lepton sector - beyond SM m ν m ν m ν

  5. A few thoughts on lepton flavour violation ⋆ Huge experimental effort: MEG, PRISM/PRIME, SuperB, JPARC, ... What is required of a SM extension to have “observable” cLFV? γ l j l i ( µ → eγ ) = 10 − 12 × (2 TeV / Λ Λ) 4 × ( θ µe θ µe / 0 . 01) 2 New � BR ( µ → eγ ) ( µ → eγ ) Λ θ µe Physics New Physics (beyond SM m ν + Lepton Flavour Mixing m ν ) m ν ◮ cLFV ⇔ ⇔ ⇔ Λ θ ℓ i ℓ j Λ Λ ∼ O ( TeV ) non-negligible θ ℓ i ℓ j θ ℓ i ℓ j (testable at colliders ?) (suggested by neutrino mixing ...) ◮ Many reasons support considering BSM O O O (TeV) scenarios of New Physics Hierarchy - Higgs FT problem; dark matter candidate; neutrino mass generation (?); ... ◮ Smallness of m ν m ν m ν (and nature - Majorana!? ) � � � new mechanism of mass generation ◮ Is Nature hidding clues of BSM in cLFV processes? How to unravel them?

  6. cLFV beyond the SM - road map ◮ Assume existence of New Physics (couplings, dynamics, states) and ◮ Evaluate impact of New Physics for all possible signatures: “SM” collider signals, cascade decays, EW precision tests, CP violation, anomalous moments ( � E , � B ), qFV, LFV, unitarity, dark matter... at high-energies, high-intensities and astro/cosmo frontier ℓ i → ℓ j γ ℓ i → 3 ℓ j ◮ All cLFV observables: ℓ i → ℓ j γ ℓ i → ℓ j γ , ℓ i → 3 ℓ j ℓ i → 3 ℓ j (and angular distributions, T-, P-odd asymmetries) , µ − e, N µ − e, N µ − e, N (different nuclei) ..., meson decays , ... ◮ Synergy of observables - peculiar patterns, dominances - id/exclude candidates... 8 Effective approach < ◮ Approaches: Model dependent :

  7. ◮ Effective Approach ◮ ◮

  8. cLFV: the effective approach ◮ At higher scales (TeV? M GUT ? M Planck ?) additional “heavy” degrees of freedom ◮ Integrate out “new heavy fields” (e.g. as possibly required to generate ν masses) ◮ Effective Lagrangian: “vestigial” (new) interactions with SM fields at low-energies L eff = L SM + L eff = L SM + L eff = L SM + higher order (non-renormalisable) terms 1 ∆ L d ≥ 5 ∼ P ∆ L d ≥ 5 ∼ P ∆ L d ≥ 5 ∼ P 1 1 Λ n − 4 C n ( g, Y, ... ) O n ( ℓ, q, H, γ, ... ) C n ( g, Y, ... ) O n ( ℓ, q, H, γ, ... ) C n ( g, Y, ... ) O n ( ℓ, q, H, γ, ... ) Λ n − 4 Λ n − 4 n ≥ 5 n ≥ 5 n ≥ 5 Λ : Λ : Λ : mass scale of new physics C n : C n : C n : dimensionless couplings - gauge couplings, Yukawas, loop factors ( (4 π ) m ) , ... C n ⇒ C n C n ⇒ ⇒ ij : ij : ij : matrices in flavour space! O n : O n : O n : “external legs” of the diagrams - SM fields only!

  9. cLFV: the effective approach H H H H H H e R e R e R 1 1 ∆ L d ≥ 5 = Weinberg 1 1 1 1 ∆ L d ≥ 5 ∆ L d ≥ 5 C 5 C 5 C 5 + C 6 C 6 C 6 e L e L e L Λ × Λ 2 × + ... µeee Λ 2 Weinberg µeee µeee Λ 2 Weinberg Λ Λ µ R µ R µ R e L e L e L ν j ν i ν j ν j ν i ν i L L L L L L ∆ L 5 (Weinberg): neutrino masses ( ∆ L = 2 ) ◮ Dimension 5 ∆ L 5 ∆ L 5 Common to all models with Majorana neutrinos [seesaws, radiative (Zee, RpV), ...] ◮ Dimension 6 ∆ L 6 : ∆ L 6 : ∆ L 6 : kinetic corrections, cLFV (dipole and 3-body) , EW precision, t physics... Differs from model to model - used to disentangle scenarios... ∆ L 7 , 8 ,.. : ◮ Higher order ∆ L 7 , 8 ,.. : ∆ L 7 , 8 ,.. : ν (transitional) magnetic moments, NSI, ...

  10. cLFV bounds and L eff 1 ij 1 1 C 6 16 π 2 C 6 1 1 1 C 6 ◮ Apply experimental bounds on cLFV observables to constrain ∼ ij Λ 2 16 π 2 16 π 2 ij Λ 2 Λ 2 1. hypothesis on size of “new couplings” 2. hypothesis on scale of “new physics” and/or ◮ Natural values of the couplings C 6 C 6 C 6 ij ∼ O (1) ij ∼ O (1) ij ∼ O (1) BR( µ → eγ ) | MEG ⇒ Λ Λ Λ � 50 TeV; BR( µ → 3 e ) ⇒ Λ Λ Λ � 15 TeV Λ Λ BR( τ → ℓγ ) ⇒ Λ Λ � 3 TeV; BR( τ → 3 ℓ ) ⇒ Λ Λ � 1 TeV [from La Thuile ’12] ◮ Natural scale? more delicate - well motivated: direct discovery, ... Example: discovery of type II seesaw (scalar triplet) mediator at LHC, M ∆ ∼ 1 M ∆ ∼ 1 M ∆ ∼ 1 TeV 2 × 10 − 3 BR( µ → eγ ) | MEG ⇒ | Y ∆ † µµ Y ∆ µe + Y ∆ † τµ Y ∆ τe | � 2 × 10 − 3 2 × 10 − 3 [from 0707.4058] ◮ Can we reconstruct the New Physics Lagrangian? not likely... We can identify operators (combining distinct observables) and learn about flavour structure (same observable, different flavours)

  11. cLFV bounds and L eff ij 1 1 1 16 π 2 C 6 1 C 6 C 6 1 1 ◮ Apply experimental bounds on cLFV observables to constrain ∼ Λ 2 16 π 2 ij ij Λ 2 Λ 2 16 π 2 1. hypothesis on size of “new couplings” 2. hypothesis on scale of “new physics” and/or ◮ Natural values of the couplings C 6 C 6 C 6 ij ∼ O (1) ij ∼ O (1) ij ∼ O (1) BR( µ → eγ ) | MEG ⇒ Λ Λ Λ � 50 TeV; BR( µ → 3 e ) ⇒ Λ Λ Λ � 15 TeV BR( τ → ℓγ ) ⇒ Λ Λ Λ � 3 TeV; BR( τ → 3 ℓ ) ⇒ Λ Λ Λ � 1 TeV [from La Thuile ’12] ◮ Natural scale? more delicate - well motivated: direct discovery, ... Example: discovery of type II seesaw (scalar triplet) mediator at LHC, M ∆ ∼ 1 M ∆ ∼ 1 M ∆ ∼ 1 TeV BR( µ → eγ ) | MEG ⇒ | Y ∆ † µµ Y ∆ µe + Y ∆ † τµ Y ∆ τe | � 2 × 10 − 3 2 × 10 − 3 2 × 10 − 3 [from 0707.4058] ◮ Can we reconstruct the New Physics Lagrangian? not likely... ◮ Be prepared! - master “theoretical expectations” of model M376XV to falsify it!

  12. Models of New Physics But “theoretical expectations” is an oxymoron: different theorists expect different New Physics at the TeV scale because it is - motivated by the naturalness of the weak scale - motivated by precision unification of couplings - not motivated, but why not - to their personal taste or prejudice! [cf. J¨ ager, NA62 Workshop, ’09] ◮ Here: consider examples of (well motivated?) models � � � with potentially observable cLFV implications! among many, many possibilities

  13. ◮ Models of New Physics and cLFV ◮ ◮

  14. cLFV: models of New Physics ◮ New physics at TeV: Higgs fine-tuning - hierarchy problem Dark matter candidates Within experimental reach! ◮ SM extensions introduce new particles , new flavour violating couplings.. ◮ Recall: contributions to quark FV strongly constrained (dominated by SM) No “SM background” for cLFV contributions! Generic cLFV extensions - general MSSM, Little Higgs, Xdim, 4th generation, ... 8 ◮ Examples: SM seesaw (TeV scale) - e.g. type II < cLFV from m ν m ν m ν Extended frameworks - SUSY seesaw, GUTs, ... : ◮ Find cLFV-footprints to probe the nature of the model!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend