lepton flavor violation induced by a neutral scalar at
play

Lepton flavor violation induced by a neutral scalar at future lepton - PowerPoint PPT Presentation

Lepton flavor violation induced by a neutral scalar at future lepton colliders Yongchao Zhang Washington University in St. Louis July 7, 2018 ICHEP2018, Seoul based on P. S. B. Dev, R. N. Mohapatra & YCZ, PRL120 (2018)221804 [1711.08430]


  1. Lepton flavor violation induced by a neutral scalar at future lepton colliders Yongchao Zhang Washington University in St. Louis July 7, 2018 ICHEP2018, Seoul based on P. S. B. Dev, R. N. Mohapatra & YCZ, PRL120 (2018)221804 [1711.08430] (see also P. S. B. Dev, R. N. Mohapatra & YCZ, 1803.11167) contributing to CEPC CDR & CLIC CERN Yellow Book

  2. Outline Motivations Effective LFV couplings of a (light) BSM neutral scalar H On-shell production of H at CEPC & ILC Off-shell production of H at CEPC & ILC Prospects and discussions e + e + ℓ + e − α γ, Z γ, Z ℓ − H ℓ − e − ℓ − e + β H ℓ − ℓ − e − e − α α H H ℓ + ℓ + e + e + β β Yongchao Zhang (Wustl) LFV July 7, 2018 2 / 21

  3. Motivation examples: LFV beyond SM muon g − 2 [Carena, Giudice, Wagner ’96; Raidal+ ’08; Wolfgang Altmannshofer, Carena, Crivellin ’16] H τ µ µ h µτ h µτ γ H : beyond SM scalar neutrino mass generation [Dreiner, Nickel, Staub+ ’12; de Gouvea, P. Vogel ’13; Vicente ’15; Lindner, Platscher, Queiroz ’16] charged LFV is always connected to neutrino mass generation by beyond SM scalars. [see the plenary talk by S. Petcov] Yongchao Zhang (Wustl) LFV July 7, 2018 3 / 21

  4. Calling for New Physics... The LFV couplings of the SM Higgs h , e.g. y µτ ; [Blankenburg, Ellis, Isidori ’12; Harnik, Kopp, Zupan ’12] Beyond SM doubly-charged scalars H ±± , e.g. from type-II seesaw; [Fileviez Perez, Han, Huang+ ’08; Rentala, Shepherd, Su ’11; King, Merle, Panizzi ’14] Beyond SM (light) neutral scalar H with LFV couplings h αβ Beyond SM neutral scalar: its mass & the LFV couplings: model-dependent... The most efficient way to probe the LFV couplings: future lepton colliders: CEPC, ILC, FCC-ee, CLIC if the beyond scalar H is hadrophobic and does not mixing sizably with the SM Higgs. Yongchao Zhang (Wustl) LFV July 7, 2018 4 / 21

  5. Well-motivated underlying models RPV SUSY: sneutrinos ( ˜ ν ) [Aulakh, Mohapatra ’82; Hall,Suzuki ’84; Ross, Valle ’85, Barbier+ ’04; Duggan, Evans, Hirschauer ’13] L RPV = 1 2 λ αβγ � L α � L β � E c γ Left-right symmetric models: the SU ( 2 ) R -breaking scalar H 3 [Dev, Mohapatra, YCZ ’16; ’16; ’17; Maiezza, Senjanovi´ c, Vasquez ’16] LFV couplings are generated at tree and/or loop level 2HDM: CP-even or odd (heavy) scalars from the 2nd doublet [Branco+ ’11; Crivellin, Heeck, Stoffer ’15] LFV couplings are induced from small deviation from the lepton-specific structure. Mirror models: singlet scalar connecting the SM leptons to heavy mirror leptons [Hung ’06, ’07; Bu, Liao, Liu ’08; Chang, Chang, Nugroho+ ’16; Hung, Le, Tran+ ’17] LFV couplings arise from the SM-heavy lepton mixing Yongchao Zhang (Wustl) LFV July 7, 2018 5 / 21

  6. Beyond SM neutral Higgs & effective LFV couplings Model-independent effective LFV couplings of H L Y = h αβ ¯ ℓ α, L H ℓ β, R + H . c . . For simplicity, we assume h αβ are real, symmetric, H is CP-even. H might originate from a isospin singlet, doublet or triplet, depending on specific underlying models. 1 Effective Dim-4 couplings � = Effective 4-fermion couplings like Λ 2 (¯ ee )(¯ e µ ) [Kabachenko, Pirogov ’97; Ferreira, Guedes, Santos ’06; Aranda, Flores-Tlalpa, Ramirez-Zavaleta+ ’09; Murakami, Tait ’14; Cho, Shimo ’14] m H < √ s ⇒ on-shell production Yongchao Zhang (Wustl) LFV July 7, 2018 6 / 21

  7. on-shell production e + e − → ℓ ± α ℓ ∓ β + H e + e + e + e + e − ℓ + α γ, Z γ, Z γ, Z ℓ − ℓ − H ℓ − e − e − e − ℓ − e + β H H

  8. Constraints on the LFV couplings: on-shell On-shell production amplitudes depend linearly on the LFV couplings muonium anti-muonium oscillation: (¯ µ e ) ↔ ( µ ¯ e ) ( h e µ ) e − µ − e − µ − H H µ + µ + e + e + Oscillation probablity [Clark, Love ’03] 2 (∆ M ) 2 P = Γ 2 µ + 4 (∆ M ) 2 with the H -induced mass splitting ∆ M = 2 α 3 EM h 2 e µ µ 3 m e m µ , µ = π m 2 m e + m µ H Yongchao Zhang (Wustl) LFV July 7, 2018 8 / 21

  9. Constraints on the LFV couplings: on-shell Electron and muon g − 2 ( h e ℓ , h µℓ ) [Lindner, Platscher, Queiroz ’16] H µ e e h e µ h e µ γ � � m 2 � � ∆ a e ≃ h 2 e µ m e m µ H 2 log − 3 . 16 π 2 m 2 m 2 H µ The value of h e µ to explain ( g − 2 ) µ discrepancy is excluded by the ( g − 2 ) e constraint. ∆ a µ ≡ ∆ a exp − ∆ a th µ = ( 2 . 87 ± 0 . 80 ) × 10 − 9 µ Yongchao Zhang (Wustl) LFV July 7, 2018 9 / 21

  10. Constraints on the LFV couplings: on-shell Bhabha scattering, LEP ee → ℓℓ data ( h e ℓ ) [OPAL ’03; L3 ’03; DELPHI ’05] e − ℓ − H e + ℓ + Effective 4-fermion interaction h 2 ⇒ 1 Fierz transf. e γ µ e )(¯ e ℓ ℓγ µ ℓ ) (¯ e ℓ )(¯ e ℓ ) = = = = = = = Λ 2 (¯ m 2 H If m H � √ s , the LEP limits on the cut-off scale Λ do not apply, and we have to consider the kinetic dependence 1 1 1 → ≃ q 2 − m 2 m 2 − s cos θ/ 2 − m 2 H H H Yongchao Zhang (Wustl) LFV July 7, 2018 10 / 21

  11. SM backgrounds: on-shell Main SM backgronds are particle misidentification for e + e − → ℓ + α ℓ − β + X , ( α � = β ) The mis-identification rate is expected to be small, of order 10 − 3 [Milstene, Fisk, Para ’06; Hammad, Khalil, Un ’16; Yu, Ruan, Boudry+ ’17] Examle: e + e − → Zh → ( e + e − /µ + µ − ) h � e ± µ ∓ + h m H = 50 GeV s = 240 GeV m H = 300 GeV 1000 s = 1 TeV 10 5 ab - 1 1 ab - 1 h e μ = 0.003 h e μ = 0.01 5 Number of Events Number of Events 100 background 1 background signal 0.50 signal 10 0.10 1 0.05 0.1 0.01 50 100 150 200 200 400 600 800 1000 m e μ [ GeV ] m e μ [ GeV ] � � S / S + B = 55 S / S + B = 61 Yongchao Zhang (Wustl) LFV July 7, 2018 11 / 21

  12. CEPC & ILC prospects: on-shell 1 2 ) μ ( g - 2 ) e g - ( → 0.1 ee → μμ muonium oscillation | h e μ | 10 - 2 ILC 10 - 3 CEPC 10 - 4 10 100 1000 m H [ GeV ] Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of H is reconstructible (visible). Shaded regions are excluded. Dotted brown line: central values of muon g − 2 anomaly, green and yellow bands: the 1 σ and 2 σ regions. Yongchao Zhang (Wustl) LFV July 7, 2018 12 / 21

  13. CEPC & ILC prospects: on-shell 1 ( g - 2 ) e ⟶ 0.1 ee → ττ | h e τ | 10 - 2 ILC 10 - 3 CEPC 10 - 4 10 100 1000 m H [ GeV ] Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of H is reconstructible (visible). Shaded regions are excluded. Yongchao Zhang (Wustl) LFV July 7, 2018 13 / 21

  14. CEPC & ILC prospects: on-shell 1 d e d u l c x e 2 ) μ g - ( 0.1 ( g - 2 ) μ ILC | h μτ | 10 - 2 CEPC 10 - 3 10 100 1000 m H [ GeV ] Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of H is reconstructible (visible). Shaded regions are excluded. Dotted brown line: central values of muon g − 2 anomaly, green and yellow bands: the 1 σ and 2 σ regions. The muon g − 2 discrepancy can be directly tested at CEPC via the searches of ee → µτ + H Yongchao Zhang (Wustl) LFV July 7, 2018 14 / 21

  15. off-shell production e + e − → ℓ ± α ℓ ∓ β ℓ − ℓ − e − e − α α H H ℓ + ℓ + e + e + β β ...at resonance when m H ≃ √ s might also be mediated by a (light) gauge boson Z ′ with LFV couplings [Heeck ’16]

  16. Constraints on the LFV couplings: off-shell Off-shell production amplitudes depend quadratically on the LFV couplings 3-body LFV decays of muon and tauon, e.g. [Sher, Yuan ’91] ee h e τ | 2 m 5 | h † Γ( τ − → e + e − e − ) ≃ 1 τ , ( δ = 2 ) 3072 π 3 m 4 δ H 2-body LFV decays of muon and tauon, e.g. [Harnik, Kopp, Zupan ’12] Γ( τ → e γ ) = α EM m 5 � | c L | 2 + | c R | 2 � c L = c R ≃ h † ee h e τ τ , . 64 π 4 24 m 2 H h ee , e µ, e τ contribute to ( g − 2 ) e & LEP ee → ℓℓ data, [DELPHI ’05; Hou, Wong ’95] | h † ee h e τ | ⇒ ee → e τ | h † e µ h e τ | ⇒ ee → µτ ( t -channel ) Yongchao Zhang (Wustl) LFV July 7, 2018 16 / 21

  17. Constraints on the LFV couplings: off-shell constraints [ GeV − 2 ] process current data µ − → e − e + e − < 10 − 12 | h † ee h e µ | / m 2 H < 6 . 6 × 10 − 11 τ − → e − e + e − < 2 . 7 × 10 − 8 | h † ee h e τ | / m 2 H < 2 . 6 × 10 − 8 τ − → µ − e + e − < 1 . 8 × 10 − 8 | h † ee h µτ | / m 2 H < 1 . 5 × 10 − 8 τ − → µ + e − e − < 1 . 5 × 10 − 8 | h † e µ h e τ | / m 2 H < 1 . 9 × 10 − 8 τ − → e − γ < 3 . 3 × 10 − 8 ee h e τ | / m 2 H < 1 . 0 × 10 − 6 | h † τ − → µ − γ < 4 . 4 × 10 − 8 e µ h e τ | / m 2 H < 1 . 2 × 10 − 6 | h † | h † ee h e τ | / m 2 H < 1 . 1 × 10 − 7 < 5 . 0 × 10 − 13 ( g − 2 ) e | h † e µ h e τ | / m 2 H < 1 . 0 × 10 − 8 | h † ee h e τ | / m 2 H < 1 . 4 × 10 − 7 ee → ee , ττ Λ > 5 . 7 & 6 . 3 TeV | h † e µ h e τ | / m 2 H < 1 . 3 × 10 − 7 ee → µµ, ττ Λ > 5 . 7 & 7 . 9 TeV The µ → 3 e limit is so strong that the it leaves no hope to see any signal in the channel ee → e µ at CEPC & ILC. Yongchao Zhang (Wustl) LFV July 7, 2018 17 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend