lower central series and free resolutions of arrangements
play

Lower central series and free resolutions of arrangements Alex Suciu - PDF document

Lower central series and free resolutions of arrangements Alex Suciu (Northeastern) www.math.neu.edu/~suciu joint work with Hal Schenck (Texas A&M) www.math.tamu.edu/~schenck available at: math.AG/0109070 Special Session on Algebraic and


  1. Lower central series and free resolutions of arrangements Alex Suciu (Northeastern) www.math.neu.edu/~suciu joint work with Hal Schenck (Texas A&M) www.math.tamu.edu/~schenck available at: math.AG/0109070 Special Session on Algebraic and Topological Combinatorics A.M.S. Fall Eastern Section Meeting Williamstown, MA October 13, 2001 1

  2. Lower central series G finitely-generated group. • LCS: G = G 1 ≥ G 2 ≥ · · · , G k +1 = [ G k , G ] • LCS quotients: gr k G = G k /G k +1 • LCS ranks: φ k ( G ) = rank(gr k G ) Hyperplane arrangements A = { H 1 , . . . , H n } set of hyperplanes in C ℓ . �� � • Intersection lattice: L ( A ) = H ∈B H | B ⊆ A M ( A ) = C ℓ \ � • Complement: H ∈A H Many topological invariants of M = M ( A ) are determined by the combinatorics of L ( A ). E.g.: • Cohomology ring: A := H ∗ ( M, Q ) = E/I (Orlik-Solomon algebra) • Betti numbers and Poincar´ e polynomial: X ∈ L i ( A ) ( − 1) i µ ( X ) b i := dim H i ( M, Q ) = � P ( M, t ) := Hilb( A, t ) = � ℓ i =0 b i t i 2

  3. G = π 1 ( M ) is not always combinatorially determined. Nevertheless, its LCS ranks are determined by L ( A ). Problem. Find an explicit combinatorial formula for the LCS ranks, φ k ( G ), of an arrangement group G (at least for certain classes of arrangements). LCS formulas • Witt formula A = { n points in C } G = F n (free group on n generators) φ k ( F n ) = 1 d | k µ ( d ) n k/d , or: � k ∞ (1 − t k ) φ k = 1 − nt � k =1 • Kohno [1985] B ℓ = { z i − z j = 0 } 1 ≤ i<j ≤ ℓ braid arrangement in C ℓ G = P ℓ (pure braid group on ℓ strings) ∞ ℓ − 1 (1 − t k ) φ k = � � (1 − jt ) k =1 j =1 3

  4. • Falk-Randell LCS formula [1985] If A fiber-type [ ⇐ ⇒ L ( A ) supersolvable (Terao)] with exponents d 1 , . . . , d ℓ G = F d ℓ ⋊ · · · ⋊ F d 2 ⋊ F d 1 φ k ( G ) = � ℓ i =1 φ k ( F d i ) and so: ∞ (1 − t k ) φ k = P ( M, − t ) � k =1 • Shelton-Yuzvinsky [1997], Papadima-Yuz [99] If A Koszul (i.e., A = H ∗ ( M, Q ) is a Koszul algebra) then the LCS formula holds. Remark. There are many arrangements for which the LCS formula fails. In fact, as noted by Peeva, there are arrangements for which (1 − t k ) φ k � = Hilb( N, − t ) , � k ≥ 1 for any graded-commutative algebra N . 4

  5. LCS and free resolutions We want to reduce the problem of computing φ k ( G ) to that of computing the graded Betti numbers of certain free resolutions involving the OS-algebra A = E/I . The starting point is the following (known) formula: ∞ ∞ (1 − t k ) − φ k = � � b ii t i k =1 i =0 i ( Q , Q ) j is the i th Betti number where b ij = dim Q Tor A (in degree j ) of a minimal free resolution of Q over A : ( e 1 ··· e b 1 ) → ⊕ j A b 2 j ( − j ) − → A b 1 ( − 1) · · · − − − − − − − − → A − → Q → 0 Betti diagram: 0 : 1 b 1 b 22 b 33 . . . ← linear strand 1 : . . b 23 b 34 . . . 2 : . . b 24 b 35 . . . . . . . . . . . . . . . . . . Formula follows from: 5

  6. • Sullivan: M formal = ⇒ assoc. graded Lie algebra of G = π 1 ( M ) ∼ = holonomy Lie algebra of H ∗ = H ∗ ( M, Q ): G k /G k +1 ⊗ Q ∼ � gr G := = k ≥ 1 g := L ( H 1 ) / im( ∇ : H 2 → H 1 ∧ H 1 ) • Poincar´ e-Birkhoff-Witt: ∞ (1 − t k ) − φ k = Hilb( U ( g ) , t ) � k =1 • Shelton-Yuzvinsky: ! U ( g ) = A • Priddy, L¨ ofwall: ! ∼ � Ext i A A ( Q , Q ) i = i ≥ 0 ! Here A = E/I [2] is the quadratic closure of A , and A is its Koszul dual. Remark. If A is a Koszul algebra, i.e., Ext i A ( Q , Q ) j = 0 , for i � = j, then A = A and Hilb( A ! , t ) · Hilb( A, − t ) = 1. This yields the LCS formula of Shelton-Yuzvinsky. 6

  7. Change of rings spectral sequence The idea now is to further reduce the computation to that of a (minimal) free resolution of A over E , → ⊕ j E b ′ → ⊕ j E b ′ · · · − 2 j ( − j ) − 1 j ( − j ) − → E − → A → 0 ij = dim Q Tor E and its Betti numbers, b ′ i ( A, Q ) j . This problem (posed by Eisenbud-Popescu-Yuzvinsky [1999]) is interesting in its own right. Let a j = # { minimal generators of I in degree j } � b 1 � Clearly, a 2 + b 2 = . A 5-term exact sequence 2 argument yields: Lemma. a j = b ′ 1 j = b 2 j , for all j > 2 . Betti diagram: 0 : 1 . . . b ′ b ′ 1 : . a 2 . . . ← linear strand 23 34 b ′ b ′ 2 : . a 3 . . . 24 35 b ′ b ′ ℓ − 1 : . a ℓ . . . 2 ,ℓ +1 3 ,ℓ +2 ℓ : . . . . 7

  8. � Key tool : Cartan-Eilenberg change-of-rings spectral sequence associated to the ring maps E ։ A ։ Q : Tor A Tor E ⇒ Tor E � � j ( A, Q ) , Q = i + j ( Q , Q ) i Tor E Tor A 1 (Tor E Tor A 2 (Tor E Tor A 3 (Tor E 2 ( A, Q ) 2 ( A, Q ) , Q ) 2 ( A, Q ) , Q ) 2 ( A, Q ) , Q ) � ����������������� d 2 , 1 2 Tor E Tor A 1 (Tor E Tor A 2 (Tor E Tor A 3 (Tor E 1 ( A, Q ) 1 ( A, Q ) , Q ) 1 ( A, Q ) , Q ) 1 ( A, Q ) , Q ) � ������������������� � ������������������� d 3 , 0 3 d 2 , 0 d 3 , 0 2 2 Tor A Tor A Tor A Q 1 ( Q , Q ) 2 ( Q , Q ) 3 ( Q , Q ) The (Koszul) resolution of Q as a module over E is linear, with � n + i − 1 � dim Tor E i ( Q , Q ) i = i Thus, if we know Tor E i ( A, Q ), we can find Tor A i ( Q , Q ), provided we can compute the differentials d p,q r . We carry out this program, at least in low degrees. As a result, we express φ k , k ≤ 4, solely in terms of the resolution of A over E . 8

  9. Theorem. For an arrangement of n hyperplanes: φ 1 = n φ 2 = a 2 φ 3 = b ′ 23 � a 2 � + b ′ φ 4 = 34 − δ 4 2 where � µ ( X ) � � a 2 = # { generators of I 2 } = 2 X ∈ L 2 ( A ) b ′ 23 = # { linear first syzygies on I 2 } b ′ 34 = # { linear second syzygies on I 2 } δ 4 = # { minimal, quadratic, Koszul syzygies on I 2 } φ 1 , φ 2 : elementary φ 3 : recovers a formula of Falk [1988] φ 4 : new 9

  10. Decomposable arrangements Let A be an arrangement of n hyperplanes. Recall that φ 1 = n , φ 2 = � X ∈ L 2 ( A ) φ 2 ( F µ ( X ) ) Falk [1989]: � φ k ≥ φ k ( F µ ( X ) ) for all k ≥ 3 (*) X ∈ L 2 ( A ) If the lower bound is attained for k = 3, we say that A is decomposable (or local , or minimal linear strand ). Conjecture (MLS LCS). If A decomposable, equality holds in (*), and so ∞ 1 − µ ( X ) t (1 − t k ) φ k = (1 − t ) n � � 1 − t k =1 X ∈ L 2 ( A ) Proposition. The conjecture is true for k = 4 : µ ( X ) 2 ( µ ( X ) 2 − 1) � φ 4 = 1 4 X ∈ L 2 ( A ) 10

  11. If A decomposable, we compute the entire linear strand of the resolution of A over E . If, moreover, rank A = 3, we compute all b ′ ij from M¨ obius function. Example. A = { H 0 , H 1 , H 2 } pencil of 3 lines in C 2 . OS-ideal generated by ∂e 012 = ( e 1 − e 2 ) ∧ ( e 0 − e 2 ). Minimal free resolution of A over E : ( ∂e 012 ) ( e 1 − e 2 e 0 − e 2 ) − E 2 ( − 2) 0 ← A ← − E ( − 1) − E ← − − − − ← − − − − − − − − −    e 1 − e 2 e 0 − e 2 0     e 1 − e 2 e 0 − e 2  0 − E 3 ( − 3) ← ← − − − − − − − − − − − − − − − − − − − − − − − · · · Thus, b ′ i,i +1 = i , for i ≥ 1, and b ′ i,i + r = 0, for r > 1. Lemma. For any arrangement A : � µ ( X ) + i − 1 � � b ′ i,i +1 ≥ i i + 1 X ∈ L 2 ( A ) � µ ( X ) �� µ ( Y ) � � δ 4 ≤ . 2 2 L 2( A ) ( X,Y ) ∈ ( ) 2 If A is decomposable, then equalities hold. Lemma + Theorem = ⇒ Proposition. 11

  12. Example. X 3 arrangement (smallest non-LCS) ✬ ✩ res of residue field over OS alg ❏ total: 1 6 25 92 325 1138 ❏ 0: 1 6 24 80 240 672 ❏ 1: . . 1 12 84 448 ❏ ✫ ✪ 2: . . . . 1 18 ❏ ❏ res of OS alg over exterior algebra total: 1 4 15 42 97 195 354 595 942 1422 2065 0: 1 . . . . . . . . . . 1: . 3 6 9 12 15 18 21 24 27 30 2: . 1 9 33 85 180 336 574 918 1395 2035 8 i ( i + 1)( i 2 + 5 i − 2). i,i +2 = 1 We find: b ′ i,i +1 = 3 i , b ′ Thus: φ 1 = n = 6 φ 2 = a 2 = 3 φ 3 = b ′ 23 = 6 � a 2 + b ′ � φ 4 = 34 − δ 4 = 3 + 9 − 3 = 9 2 � ∞ k =1 (1 − t k ) φ k = (1 − 2 t ) 3 Conjecture says: 2 ), though definitely G �∼ i.e.: φ k ( G ) = φ k ( F 3 = F 3 2 . 12

  13. Graphic arrangements G = ( V , E ) subgraph of the complete graph K ℓ . (Assume no isolated vertices, so that E determines G .) The graphic arrangement (in C ℓ ) associated to G : A G = { ker( z i − z j ) | { i, j } ∈ E} • G = K ℓ = ⇒ A G braid arrangement • G = A ℓ +1 diagram = ⇒ A G Boolean arrangement • G = ℓ -gon = ⇒ A G generic arrangement Theorem. (Stanley, Fulkerson-Gross) A G is super- solvable ⇐ ⇒ ∀ cycle in G of length > 3 has a chord. Lemma. (Cordovil-Forge [2001], S-S) a j = # { chordless j + 1 cycles } Together with a previous lemma ( a j = b 2 j ), this gives: Corollary. A G supersolvable ⇐ ⇒ A G Koszul. For arbitrary A : = ⇒ true (Shelton-Yuzvinsky) ⇐ = open problem 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend