baryogenesis leptogenesis and lepton flavor violation
play

Baryogenesis, Leptogenesis and Lepton Flavor Violation Heinrich P - PowerPoint PPT Presentation

Baryogenesis, Leptogenesis and Lepton Flavor Violation Heinrich P as University of Hawaii Honolulu, HI, USA Super B Factory Workshop, Hawaii 2005 H. P as Baryogenesis, Leptogenesis, LFV SuperB 2005 1 Outline Status: Evidence for


  1. Baryogenesis, Leptogenesis and Lepton Flavor Violation Heinrich P¨ as University of Hawaii Honolulu, HI, USA Super B Factory Workshop, Hawaii 2005 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 1

  2. Outline • Status: Evidence for the baryon asymmetry • Requisites: Sakharov conditions for baryogenesis • Realization: Particle physics scenarios • Focus: Leptogenesis and the seesaw mechanism • Work out: LFV and the seesaw mechanism H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 2

  3. Evidence for the baryon asymmetry Observation: there are more baryons than anti-baryons in the universe • Spectrum of anti-protons in cosmic radiation (BESS/balloon in 35 km altitude) consistent with generation from cosmic primaries • no anti-nuclei found in cosmic radiation (AMS spectrometer/Discovery) H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 3

  4. Evidence for the baryon asymmetry • no aniihilation radiation detected in the local galaxy cluster • no distortion of cosmic microwave background from particle-anti-particle annihilation in the observable universe H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 4

  5. Magnitude of baryon asymmetry big bang nucleosynthesis: ∼ 0 . 1 − 180 s after big bang Synthesis p, n → D, 3 He, 4 He, 7 Li dissociated by collisions with high-energetic γ ’s ⇒ sensitive to: η B = n B − n B n γ Search for D , 3 He, 4 He, 7 Li in gas clouds and stars with small metallicity ⇒ 2 . 6 · 10 − 10 < η B < 6 . 2 · 10 − 10 S. Sarkar, astro-ph/0205116 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 5

  6. Magnitude of baryon asymmetry Anisotropies in the CMB: Atomic synthesis ∼ 380000 y after big bang D.N. Spergel, Astrophys. J. Suppl. 148 Acustic oscillations in the early universe (2003) 175 Comparison 1st peak (fundamental wave: gravity ⇒ / ⇒ gas pressure) to 2nd peak (overtone: gravity ⇔ gas pressure) ⇒ Ratio baryons (gravity + gas pressure)/ cold dark matter (gravity) ⇒ Ratio ρ B / ρ γ ≃ 1 η B = 6 . 1 +0 . 3 − 0 . 2 · 10 − 10 ⇒ H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 6

  7. Baryon asymmetry as initial condition? Possibility: η B = 6 · 10 − 10 as initial condition? Inflationary epoch: 1 − kr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 � ds 2 = dt 2 − R 2 ( t ) � dr 2 � R ( t ) ∝ exp( Λ / 3 t ) • ρ Λ = Λ / 8 πG : Vacuum energy of inflaton field • ⇒ flat, homogenous und empty universe! • ⇒ end of inflation: decay of inflaton field into thermal plasma • ⇒ particles and anti-particles in equal abundances • ⇒ Necessity of baryogenesis after inflationary epoch H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 7

  8. Sakharov-Bedingungen for baryogenesis • Baryon number violation: Interactions, which generate or annihilate B • Non-Equilibrium: Γ( i ( � p i ,� s i ) → f ( � p f ,� s f )) � = Γ( f ( � p f ,� s f ) → i ( � p i ,� s i )) ⇒ arrow of time • C violation: Γ( i ( � p i ,� s i ) → f ( � p f ,� s f )) � = Γ( i ( � p i ,� s i ) → f ( � p f ,� s f )) ⇒ different process rates for particles and anti-particles • CP violation: Γ( i ( � p i ,� s i ) → f ( � p f ,� s f )) � = Γ( i ( − � p i ,� s i ) → f ( − � p f ,� s f )) ⇒ different process rates for particles and anti-particles of different parities A.D. Sakharov, 1967; V.A. Kuzmin, 1970 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 8

  9. Sakharov-Bedingungen for baryogenesis How can the Sakharov conditions be realized in a particle physics model? Baryon number violation? H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 9

  10. 1st Model: GUT Baryogenesis Hypercharge Standard Model Quarks u c t d s b L L L u , R d , R c , s , R t , R b Grand Unified Theory R R SU(2) Leptons e , R µ , τ quarks and leptons in the R R same multiplet ν ν ν e µ τ L L L Unification of forces Strong Right handed neutrinos? ..."Desert"... Supersymmetry symmetry: bosons <−> fermions quarks <−> (scalar) squarks leptons <−> (scalar) sleptons bosons <−> (s=1/2) bosinos coupling unification benefits: cancels divergencies dark matter candidate necessary for gravity H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 10

  11. 1st Model: GUT Baryogenesis • Baryon number violationen: GUT multiplet • Non-equilibrium decay of heavy X -bosons for M X > T universe • CP -violation: Γ( X → qq ) > Γ( X → qq ) • Problem: thermal generation of X bosons with m X ∼ M GUT → high reheating temperature after inflation T reh ∼ M GUT ≃ 10 16 GeV → powerful generation of weakly interacting superpartners (gravitinos) in SUSY scenarios → decay products prevent successful BBN Ingnatiev, Krasnikov, Kuzmin, Tavkhelidze, 1978; Yoshimura, Weinberg, 1979 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 11

  12. 2nd Model: Elektroweak baryogenesis Baryon number violation already in the Standard Model? H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 12

  13. 2nd Model: Elektroweak baryogenesis Sphalerons: B violation in the Standard Model Topologically different field configurations ⇒ degenrated vacua with different baryon numbers t’Hooft 1976 T > T EW ⇒ Transitions between vacua, Baryon number violation Kuzmin, Rubakov, Shaposhnikov, 1985 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 13

  14. 2nd Model: Elektroweak baryogenesis Electroweak phase transition ∼ 10 − 10 s after big bang Condensation of the Higgs field: � φ � = 0 → � φ � = v ( T < T c ) ⇒ Mass generation, CP violation Non-equilibrium: analogy water-steam transition Requirement: 1st order transition ⇔ competing ground states dependent of Higgs potential ⇒ depending on Higgs self interaction √ λ ⇒ m H = v ( T = 0) 2 λ < 70 GeV m H > 114 GeV bei LEP too small! H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 14

  15. 3rd Modell: Leptogenesis Combination of Non-equilibrium decay and baryogenesis at low energies? H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 15

  16. 3rd Modell: Leptogenesis Neutrino mass generation in the seesaw mechanism Motivation: m ν ≪ m u,d,e , Standard Model: m ν ≡ 0 , since no right-handed neutrino + h ( ) 0 h Assumption: ∃ right-handed neutrino N R : “Normal” Dirac mass term m D ν L N R ( ) L ν ν R e However: N R is a SM singlet! ⇒ Majorana mass term N R M R ( N R ) C , M R ≫ m D ν R C ν L E. Majorana 1937 ν c m D � � � � � � 0 ν L m D+M ≡ L m D M R ( N R ) c ( N R ) m D ≪ m R ⇒ m light ≃ − ( m D ) 2 /M R ≪ m D ⇒ ∃ right-handed Neutrino N R with L violating mass M R ∼ 10 14 GeV H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 16

  17. 3rd Modell: Leptogenesis N R decays in the early universe • Non-equilibrium decay of heavy neutrinos for M R > T universe • CP violation Γ( N R → ¯ h + ¯ ν L ) > Γ( N R → h + ν L ) ⇒ L -violation • B -violation: L -violation + B + L violating sphaleron processes → B violation ⇒ Relations to neutrino physics + lepton flavor violation! Fukugita, Yanagida, 1986 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 17

  18. 3rd Modell: Leptogenesis ν R sector 3 Majorana masses 6 R−Matrix elements seesaw−Relation 18 parameters ν L sector 3 mixing angles: θ sun , , θ atm θ 13 1 Dirac phase 2 2 2 2 ∆ m : ∆ m ∆ m sun atm 2 Majorana phases , 1 absolute mass H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 18

  19. LFV processes ν Y ν ∝ ( m D ) 2 ∝ M R ( ∼ M 3 ) Inverting the seesaw matrix: Y † ⇒ Look for processes ∝ Y † ν Y ν ⇒ Lepton Flavor violating corrections to slepton masses! ~ h 2 h 2 ~ ~ ~ ~ l l i j l l i j ~ ν R ν R γ 2 ~ ( m ) δ γ χ µ e L ~ ~ l l µ e µ e µ e ~ ~ ν µ ν e ~ 2 χ o ( m ) δ L µ e H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 19

  20. Br ( µ → eγ ) and Br ( τ → µγ ) SUSY scenario SPS1, m 1 < 0 . 03 eV PDG: Br ( µ → eγ ) < 1 . 2 · 10 − 11 (90% C.L. ) ⇒ M R < 10 14 − 10 15 GeV Br ( τ → µγ ) < 10 − 8 (90% C.L. ) : determination accuracy factor 2! F. Deppisch, H. P¨ as, A. Redelbach, R. R¨ uckl, Y. Shimizu, Eur.Phys.J. C28 (2003) 365-374 H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 20

  21. Gravitino bound and R-matrix elements mSUGRA problem: overabundance of gravitinos for T R > 10 10 GeV ( m 3 / 2 ≃ 1 TeV) ⇒ M 1 < 10 T R < 10 11 GeV ⇒ x 2 , 3 ≃ 0 , π, 2 π Contours: y i = 0 . 1 , best fit ν L F. Deppisch, H. P¨ as, A. Redelbach, R. R¨ uckl, in preparation H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 21

  22. Br ( µ → eγ / Br ( τ → µγ and x 1 Strong variation of Br ( µ → eγ ) /Br ( τ → µγ ) with x 1 SuperB: Br ( τ → µγ ) ≃ 10 8 ⇒ Sensitivity: Br ( µ → eγ ) /Br ( τ → µγ ) < O 10 − 3 F. Deppisch, H. P¨ as, A. Redelbach, R. R¨ uckl, in preparation H. P¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend