flavor violation and electroweak baryogenesis
play

Flavor Violation and Electroweak Baryogenesis Jing Shu - PowerPoint PPT Presentation

Flavor Violation and Electroweak Baryogenesis Jing Shu (arXiv:1609.09849) ITP-CAS Oct 27, 2017 Jing Shu | Oct 27, 2017 1 / 42 The Matter/Energy Budget of our Universe Cosmological Parameters from Planck Planck 2015 Fit of the base CDM at


  1. Flavor Violation and Electroweak Baryogenesis Jing Shu (arXiv:1609.09849) ITP-CAS Oct 27, 2017 Jing Shu | Oct 27, 2017 1 / 42

  2. The Matter/Energy Budget of our Universe

  3. Cosmological Parameters from Planck Planck 2015 Fit of the base Λ CDM at 68% CL, arxiv:1502.01582v2 Jing Shu | Oct 27, 2017 3 / 42

  4. Big Bang NucleoSynthesis PDG 2015, Rev.Mod.Phys,88,015004 Jing Shu | Oct 27, 2017 5 / 42

  5. Baryon Asymmetry A very tiny imbalance ⌘ = n B ⇠ 10 � 10 ! Baryogenesis n � Jing Shu | Oct 27, 2017 6 / 42

  6. Sakharov Conditions for Baryogenesis, 1967 ⌃ B Violation (Electroweak Sphalerons) ⌃ C, CP Violation ⌃ Out of equilibrium (Expansion of Universe, First-Order Phase Transition) Jing Shu | Oct 27, 2017 8 / 42

  7. Mechanisms of Baryogenesis ⌃ GUT Baryogenesis ( ⇠ 10 16 GeV) ⌃ A ffl eck-Dine mechanism ⌃ Modified Cosmology Model ⌃ Baryogenesis via Leptogenesis ⌃ Spontaneous Baryogenesis ⌃ Electroweak Baryogenesis ( ⇠ 100GeV) Jing Shu | Oct 27, 2017 9 / 42

  8. Electroweak Baryogenesis: An Application A lepton-flavored Electroweak Baryogenesis scenario (arxiv:1609.09849) CP nature of the Higgs boson Flavor nature of the Higgs boson EDM 25 / Jing Shu | Oct 27, 2017 42

  9. h ! τ µ Phys.Lett.B07,053 arXiv:1508.03372 ⇢ < 1 . 85% ATLAS 2015 Br( h ! ⌧ µ ) = 0 . 84 +0 . 39 < 1 . 51% CMS 2015 , Best Fit � 0 . 37 26 / Jing Shu | Oct 27, 2017 42

  10. LFV ! New Physics ! CPV ? New physics from an extended Leptonic Yukawa sector ? Also need CP-violation for baryogenesis Two Higgs Doublet Model A SM Limit Exists 27 / Jing Shu | Oct 27, 2017 42

  11. Potentials Convential Form: A di ff erent form: 28 / Jing Shu | Oct 27, 2017 42

  12. Types of 2HDM The Four types of 2HDM with no LFV. Phys.Rept.2012.02.002 To have LFV ! Couple e i R to both doublets 29 / Jing Shu | Oct 27, 2017 42

  13. CPV - Invariant How to properly define a CPV source Jarlskog-like Invariant 30 / Jing Shu | Oct 27, 2017 42

  14. CPV in SM: the CKM Matrix Rephasing Invariant Quantities: | V ij | 2 V ↵ i V � j V ⇤ ↵ j V ⇤ � i ! Imaginary Part corresponds to CPV 31 / Jing Shu | Oct 27, 2017 42

  15. Condition 2: CPV in SM: Jarlskog Invariant 1.5 excluded at CL > 0.95 excluded area has CL > 0.95 γ 1.0 ∆ m & ∆ m d s sin 2 β 0.5 ∆ m d ε α K γ β η 0.0 α V α ub -0.5 ε -1.0 K γ sol. w/ cos 2 β < 0 (excl. at CL > 0.95) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 ρ Fig. 12.2, PDG, 2014 J = c 1 s 2 1 c 2 s 2 c 3 s 3 sin � = 3 . 06 +0 . 21 � 0 . 20 ⇥ 10 � 5 J 0 = det[ m 2 u , m 2 d ] (100GeV) 12 ⇠ 10 � 20 Not large enough! ) New Physics 15 / Jing Shu | Oct 27, 2017 42

  16. CPV Invariant in SM Rephasing Invariants CKM Unitarity Q ↵ i � j = V ↵ i V � j V ⇤ ↵ j V ⇤ � i . ↵ 6 = � , i 6 = j, = ) J ⌘ Im Q 1122 Jarlskog, Dunietz, Greenberg, Wu 1985. det[ M U , M D ] = 2 i ( m t � m u )( m t � m c )( m c � m u )( m b � m d )( m b � m s )( m s � m d ) J Branco, Lavoura, Silva, 1999. ( H f ⌘ M f M † f ) tr([ H U , H D ] 3 ) = 6 i ( m 2 t � m 2 u )( m 2 t � m 2 c )( m 2 c � m 2 u )( m 2 b � m 2 d )( m 2 b � m 2 s )( m 2 s � m 2 d ) J 32 / Jing Shu | Oct 27, 2017 42

  17. Symmetries in Type III 2HDM v 2 400 e 0 i R = U ( e R ) ij e j R , E , Y 2 E 200 Y 1 L = U ( E L ) ij E j E 0 i L , 400 v 1 � 400 � 200 200 Φ 0 i = U ( Φ ) ij Φ j � 200 � 400 33 / Jing Shu | Oct 27, 2017 42

  18. The CPV Flow Botella, Silva, 1995 2 X X 1 ( Y E c ) ij ( Y E † v a v ⇤ J E = b µ bc ) ji a v 2 µ HB 12 a,b,c =1 ij = ⌧ ,µ 8 Gauge Basis: � Y E 2 , ⌧ µ Im Y E ) Baryon Asymmetry > > 2 , ⌧ µ < Im J E = > > : 2 m ⌧ Im N E ⌧⌧ /v 2 Mass Basis: ) CP-violating h ¯ ⌧⌧ 34 / Jing Shu | Oct 27, 2017 42

  19. Transport Equations Jing Shu | Oct 27, 2017 2 / 3

  20. Phenomenological Implications h ! ⌧ ± µ ⌥ ⌧ ! µ � EDM Higgs signal strength h ! ¯ ⌧⌧ 35 / Jing Shu | Oct 27, 2017 42

  21. EDM, MDM and τ ! µ γ Br( ⌧ ! µ � ) < 4 . 4 ⇥ 10 � 8 90C.L., BaBar, PhysRevLett.104.021802 Two Loop: γ γ γ t/b, µ/ ν τ , t, W ± /G ± , H ± τ τ W ± /G ± , H ± . A 0 A 0 τ γ /Z γ /Z , , H H ± W ± H , , h h f 0 f f f 0 f f 0 f f ν f One Loop: No CPV from h ⌧ µ : N E ⌧ µ N E µ ⌧ = 0 36 / Jing Shu | Oct 27, 2017 42

  22. EDM γ � � � � d e � � � ⇡ 1 . 87 ⇥ 10 � 29 | Im y ⌧ | τ τ � e A 0 τ γ /Z , H , h f 0 f f � � � � d e � � � < 8 . 7 ⇥ 10 � 29 e · cm ACME 2014: � e | Im y ⌧ | < 4 . 66 ! CPV is less constrained 37 / Jing Shu | Oct 27, 2017 42

  23. h ! ττ JHEP1405,104 JHEP1504,117 ⇢ 1 . 43 +0 . 43 ATLAS 2015 � 0 . 37 µ ⌧⌧ = 0 . 78 ± 0 . 27 CMS 2014 38 / Jing Shu | Oct 27, 2017 42

  24. A CP-violating h ¯ ττ � m f v  ⌧ (cos � ⌧ ¯ ⌧⌧ + sin � ⌧ ¯ ⌧ i � 5 ⌧ ) h Sensitivities: LHC (PhysRevD.92.096012(2015)) 150fb � 1 500fb � 1 3ab � 1 15 � 9 � 4 � Higgs factories: ⇡ 4 . 4 � at 250GeV with 1ab � 1 PhysRevD.88.076009(2013). 39 / Jing Shu | Oct 27, 2017 42

  25. �� ���� �� Physical Implications of the Lepton-Flavored EWBG r 32 = 0.9 r 32 = 1.1 | y � |= 1 ± 0.1 0.4 0 % 0 % 0.5 % 14 ° 0.2 0.5 % 1 % 11 ° 1 % Im ( y � ) 4 ° 1.43 % 0.0 1.41 % - 4 ° - 11 ° - 14 ° - 0.2 - 0.4 0.0 0.5 1.0 1.5 2.0 Re ( y � ) 40 / Jing Shu | Oct 27, 2017 42

  26. Summary and Outlook ⌃ Mechanisms of Electroweak Baryogenesis is discussed. ⌃ A Lepton flavored scenario is studied. CP-violating h ¯ ⌧⌧ is expected from EWBG and can be probed at colliders. This is correlated with discovery of h ⌧ ± µ ⌥ . ⌃ More dedicated work on this subject can be interesting and important. 41 / Jing Shu | Oct 27, 2017 42

  27. Thanks 42 / Jing Shu | Oct 27, 2017 42

  28. Parameters Planck 2015, arxiv:1502.02114 Jing Shu | Oct 27, 2017 1 / 3

  29. Approximations ⌃ Local chemical equilibrium. ⌃ Neglect weak sphaleron interactions in transport equations. ⌃ Local Baryon number conservation. ⌃ Weak interactions are in thermal equilibrium. ⌃ Chemical equilibrium for strong sphaleron interactions. Jing Shu | Oct 27, 2017 3 / 3

  30. Outline ⌃ Mechanisms of Electroweak Baryogenesis ⌃ Why going beyond the SM ? ⌃ Example: Lepton-Flavored Electroweak Baryogenesis ⌃ Gravitational Waves from Electroweak Phase Transition 10 / Jing Shu | Oct 27, 2017 42

  31. Condition 1: The Anomalous Baryonic Current Anomalies: ( ⇡ 0 ! �� ) Adler, 1969; Bell and Jackiw 1969; Fujikawa 1979.) B L + L L = n f g 2 @ µ J µ 32 ⇡ 2 ✏ ↵��� W ↵� a W �� a Z t f Z  � g 2 32 ⇡ 2 W µ ⌫ f d 3 x W aµ ⌫ B ( t f ) � B ( t i ) = n f t i ∆ B = n f [ N CS ( t f ) � N CS ( t i )] 11 / Jing Shu | Oct 27, 2017 42

  32. Condition 1: The n-Vacua and Sphalerons � 8 π 2 g 2 ⇡ 10 � 173 Instanton(’t Hooft 1976) mediated tunnelling rate: e Saddle point solution, Sphalerons (Manton, 1983). Sphaleron Energy: E = (1 . 6 ⇠ 2 . 7) ⇥ 4 ⇡ v g Rate unsuppressed at high T 12 / Jing Shu | Oct 27, 2017 42

  33. Condition 1: Sphaleron Rate in SM -10 pure gauge -15 -20 -25 4 log Γ / Τ -30 standard multicanonical fit perturbative -35 log[ α H(T)/T] -40 -45 130 140 150 160 170 T / GeV Lattice result, T C = (159 . 5 ± 1 . 5)GeV , Phys.Rev.Lett,113, 141602 (2014). Γ brok ⇠ T 4 exp( � E sph Γ sym ⇡ 6 ⇥ (18 ± 3) ↵ 5 W T 4 , ) T 13 / Jing Shu | Oct 27, 2017 42

  34. Condition 2: CPV in SM: the CKM Matrix 14 / Jing Shu | Oct 27, 2017 42

  35. Condition 2: CPV: Electric Dipole Moments J. Engel et al. Progress in Particle and Nuclear Physics 71 (2013) 2174 16 / Jing Shu | Oct 27, 2017 42

  36. Condition 2: CPV: EDM Experimental Status J. Engel et al. Progress in Particle and Nuclear Physics 71 (2013) 2174 17 / Jing Shu | Oct 27, 2017 42

  37. � Condition 3: Electroweak Phase Transition V T > T c T = T c T < T c Strongly first order EWPT. Bubble Nucleation Bubble Expansion Bubble Percolation 18 / Jing Shu | Oct 27, 2017 42

  38. Condition 3: EWPT: E ff ective Potential X X T 4 J B ( M 2 J B ( µ 2 V T e ff ( � ) = V T =0 ( � ) + 2 ⇡ 2 [ T 2 ) + 3 T 2 ) e ff gauge scalars X X m 2 J B ( ⇠ µ 2 f n f � T 2 ) � 4 C J F ( T 2 )] . gauge fermions ? ⇠ : gauge-fixing parameter 19 / Jing Shu | Oct 27, 2017 42

  39. � Condition 3: EWPT: Analytical Treatment 0 ) � 2 � ET � 3 + � ( T ) V ( � , T ) = D ( T 2 � T 2 � 4 , 4 V + � 4 + � 2 - � 3 ⇠ -independent 20 / Jing Shu | Oct 27, 2017 42

  40. Condition 3: Incapability of first order EWPT in SM Morrissey, Ramsey-Musolf, New Journal of Physics, 14,125003(2012) m H = 125 . 09 ± 0 . 21 ± 0 . 11GeV ! New Physics 21 / Jing Shu | Oct 27, 2017 42

  41. Electroweak Baryogenesis: The Picture T ⇡ 100GeV ⇡ 10 15 K Gravitational Waves (mHz level), LISA, Taiji, TianQin, DECIGO 22 / Jing Shu | Oct 27, 2017 42

  42. Di ff usion Di ff usion enhances baryon asymmetry generation. (Cohen, Kaplan, Nelson, Phys.Lett.B336(1994)41) Non-Local vs Local Closed-Time-Path(CTP) Formalism (Riotto, PRD58 (1998) 095009, Lee, Cirigliano, Ramsey-Musolf,PRD71,075010(2005)) Resonant Enhancement 23 / Jing Shu | Oct 27, 2017 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend