theory perspective on future electroweak measurements
play

Theory perspective on future electroweak measurements A. Freitas - PowerPoint PPT Presentation

Theory perspective on future electroweak measurements A. Freitas University of Pittsburgh Lepton-Photon 2017 1. Electroweak precision observables 2. Electroweak showers 3. X-plosion Electroweak precision observables: Going after large masses


  1. Theory perspective on future electroweak measurements A. Freitas University of Pittsburgh Lepton-Photon 2017 1. Electroweak precision observables 2. Electroweak showers 3. X-plosion

  2. Electroweak precision observables: Going after large masses with one weak boson

  3. Weak scale observables 1/19 Indirect sensitivity to top , Higgs , and W b f H new physics through quantum corrections Z t Z b f W W -boson mass M W (from τ µ ) Z -boson width Γ Z LEP EWWG ’05 σ had [ nb ] σ 0 Z -pole cross-section 40 σ 0 [ e + e − → ( Z ) → f ¯ f ] ALEPH DELPHI L3 30 OPAL Effective weak mixing angle sin 2 θ f eff from Z asymmetries ( A LR , A f Γ Z FB ) 20 g eff measurements (error bars 1 � � increased by factor 10) sin 2 θ f R eff = 2 | Q f | Re 10 σ from fit g eff R − g eff QED corrected L M Z 86 88 90 92 94 E cm [ GeV ]

  4. Current uncertainties 2/19 Most important quantities: Exp. error Th. error M W 15 MeV 4 MeV Γ Z 2 . 3 MeV 0 . 5 MeV had = σ [ e + e − → Z → had. ] σ 0 37 pb 6 pb 6 . 6 × 10 − 4 1 . 5 × 10 − 4 R b = Γ[ Z → b ¯ b ] / Γ[ Z → had. ] sin 2 θ ℓ 1 . 6 × 10 − 4 0 . 5 × 10 − 4 eff (from A LR and A FB ) Complete NNLO or fermionic NNLO corrections known Freitas, Hollik, Walter, Weiglein ’00; Awramik, Czakon ’02; Onishchenko, Veretin ’02 Awramik, Czakon, Freitas, Weiglein ’04; Awramik, Czakon, Freitas ’06 Hollik, Meier, Uccirati ’05,07; Freitas ’13,14; Dubovyk, Freitas, Gluza, Riemann, Usovitsch ’16 Partial 3/4-loop corrections Chetyrkin, K¨ uhn, Steinhauser ’95 Faisst, K¨ uhn, Seidensticker, Veretin ’03 Boughezal, Tausk, v. d. Bij ’05; Schr¨ oder, Steinhauser ’05 Chetyrkin et al. ’06; Boughezal, Czakon ’06

  5. Constraints on new physics in effective theory framework 3/19 c i Λ 2 O i + O (Λ − 3 ) L = � (Λ ≫ M Z ) Assuming flavor universality: i O φ 1 = ( D µ Φ) † Φ Φ † ( D µ Φ) O BW = Φ † B µν W µν Φ O (3) e = (¯ L e L σ a γ µ L e L )(¯ L e L σ a γ µ L e L ) LL ↔ O f D µ Φ)( ¯ R = i (Φ † f R γ µ f R ) ↔ O F L = i (Φ † D µ Φ)( ¯ F L γ µ F L ) ↔ O (3) F µ Φ)( ¯ = i (Φ † D a F L σ a γ µ F L ) L Pomaral, Riva ’13 Ellis, Sanz, You ’14

  6. Low-energy electroweak observables 4/19 Polarized ee, ep, ed scattering e e ( Q W ( e ) , Q W ( p ) , eDIS) ν/ ¯ ν ν/ ¯ ν E158 ’05 ; Qweak ’13 ; JLab Hall A ’13 Z νN/ ¯ νN scattering NuTeV ’02 e, p, N e, p, N Atomic parity violation ( Q W ( 133 Cs ) ) Wood et al. ’97 g ef eγ µ γ 5 e ] [ ¯ AV [¯ fγ µ f ] Gu´ ena, Lintz, Bouchiat ’05 g ef eγ µ e ] [ ¯ VA [¯ fγ µ γ 5 f ] g ef 2 − 2 | Q f | sin 2 ¯ AV = 1 θ ( µ ) → Test of running MS weak mixing 2 − 2sin 2 ¯ g ef VA = 1 angle sin 2 ¯ θ ( µ ) θ ( µ )

  7. Low-energy electroweak observables 5/19 Erler ’14 Polarized ee, ep, ed scattering 0.245 ( Q W ( e ) , Q W ( p ) , eDIS) SM published planned E158 ’05 ; Qweak ’13 ; JLab Hall A ’13 NuTeV antiscreening Q W (e) Q W (p) 0.240 SLAC JLab 2 θ W ( µ ) νN/ ¯ νN scattering s NuTeV ’02 c Q W (Cs) r e eDIS e 0.235 sin n i JLab n g Atomic parity violation LEP 1 Tevatron SLD Q W (p) 0.230 ( Q W ( 133 Cs ) ) LHC Wood et al. ’97 Mainz Q W (Ra) Q W (e) SoLID Gu´ ena, Lintz, Bouchiat ’05 KVI JLab JLab 0.225 0.001 0.01 0.1 1 10 100 1000 10000 µ [GeV] JE 201 14 → Test of running MS weak mixing angle sin 2 ¯ θ ( µ )

  8. Low-energy electroweak observables 5/19 Erler ’14 Polarized ee, ep, ed scattering 0.245 ( Q W ( e ) , Q W ( p ) , eDIS) SM published planned E158 ’05 ; Qweak ’13 ; JLab Hall A ’13 NuTeV antiscreening Q W (e) Q W (p) 0.240 SLAC JLab 2 θ W ( µ ) νN/ ¯ νN scattering s NuTeV ’02 c Q W (Cs) r e eDIS e 0.235 sin n i JLab n g Atomic parity violation LEP 1 Tevatron SLD Q W (p) 0.230 ( Q W ( 133 Cs ) ) LHC Wood et al. ’97 Mainz Q W (Ra) Q W (e) SoLID Gu´ ena, Lintz, Bouchiat ’05 KVI JLab JLab 0.225 0.001 0.01 0.1 1 10 100 1000 10000 µ [GeV] JE 201 14 Future experiments: MOLLER ( ee ), P2, SoLID ( ep ), Atomic PV in radium

  9. Future high-energy e + e − colliders 6/19 International Linear Collider (ILC) Int. lumi at √ s ∼ M Z : 50–100 fb − 1 Circular Electron-Positron Collider (CEPC) Int. lumi at √ s ∼ M Z : 2 × 150 fb − 1 Future Circular Collider (FCC-ee) Int. lumi at √ s ∼ M Z : > 2 × 30 ab − 1

  10. Future projections 7/19 Measurement error Intrinsic theory Future † Current ILC CEPC FCC-ee Current M W [MeV] 15 3–4 3 1 4 1 Γ Z [MeV] 2.3 0.8 0.5 0.1 0.5 0.2 R b [ 10 − 5 ] 66 14 17 6 15 7 sin 2 θ ℓ eff [ 10 − 5 ] 16 1 2.3 0.6 4.5 1.5 → Existing theoretical calculations adequate for LEP/SLC/LHC, but not ILC/CEPC/FCC-ee! † Theory scenario: O ( αα 2 s ) , O ( N f α 2 α s ) , O ( N 2 f α 2 α s ) ( N n f = at least n closed fermion loops)

  11. Future projections 8/19 Measurement Intrinsic theory Parametric ILC FCC-ee Current Future ILC FCC-ee M W [MeV] 3–4 1 4 1 2.6 0.6–1 Γ Z [MeV] 0.8 0.1 0.5 0.2 0.5 0.1 R b [ 10 − 5 ] < 1 < 1 14 6 15 7 sin 2 θ ℓ eff [ 10 − 5 ] 1 2.3 4.5 1.5 2 1–2 Projected parameter measurements: δ (∆ α ) δm t δα s δM Z 5 × 10 − 5 ILC: 50 MeV 0.001 2 . 1 MeV 3– 5 × 10 − 5 FCC-ee: 50 MeV 0.0002 0 . 1 MeV

  12. Sensitivity to new physics 9/19 Heavy new physics: Light new physics: sterile neutrinos Antusch, Gazzato, Fischer ’16 (one op. at a time) de Blas et al. ’16 Drewes, Garbrecht, Gueter, Klaric ’16

  13. Probes of EWPO with high-mass DY @ 100 TeV 10/19 Farina et al. ’16 J. Ruderman, FCC physics wshop ’17 M. Mangano, FCC week ’17

  14. Electroweak showers: Large scales obscured by many weak bosons

  15. Electroweak showers: massless 11/19 EW physics at future pp collider: W/Z bosons can be copiously produced at multi-TeV pp collider Enhancement ∼ log 2 ( E/M W ) for near-collinear emission Approximate description through parton shower Ciafaloni, Ciafaloni, Comelli ’00 Ciafaloni, Comelli ’05; Bell, K¨ uhn, Rittinger ’10 Christensen, Sj¨ ostrand ’14; Krauss, Petrov, Schoenherr, Spannowsky ’14 Bauer, Ferland ’16; Chen, Han, Tweedie ’16 Presence of scalar fields (Higgs/longitudinal gauge bosons): Chen, Han, Tweedie ’16

  16. Electroweak showers: massive 12/19 Effect of masses / EWSB: k 2 T → k 2 zm 2 B + zm 2 zm 2 • Kinematics: • T + ¯ C − z ¯ A • Helicity-flipping (“ultra-collinear”) • splitting functions • Complication from gauge artifacts ∝ E/M W • → Remove with convenient gauge choice L gf = − 1 � n µ W µ ( k ) �� n ν W ν ( − k ) � ( ξ → ∞ ) 2 ξ n µ = (1 , − ˆ k ) → Smoothly interpolates to Goldstone equivalence of unbroken gauge at high energies Chen, Han, Tweedie ’16

  17. Electroweak showers: massive 12/19 Effect of masses / EWSB: k 2 T → k 2 zm 2 B + zm 2 zm 2 • Kinematics: • T + ¯ C − z ¯ A ± → • Helicity-flipping (“ultra-collinear”) • dP(f W f ’) L L vs k (z=0.2) T dz dk splitting functions T 0.002 per GeV • Complication from gauge artifacts ∝ E/M W • 0.0015 W (massless) → Remove with convenient gauge choice T L gf = − 1 � n µ W µ ( k ) �� n ν W ν ( − k ) � ( ξ → ∞ ) W T 0.001 2 ξ n µ = (1 , − ˆ k ) 0.0005 → Smoothly interpolates to Goldstone equivalence W L of unbroken gauge at high energies 0 0 100 200 300 400 500 k (GeV) T

  18. Electroweak showers: mixing and PDFs 13/19 Electroweak PDFs: γ/Z T and h/Z L mixing: � dz ′ dP q → V q ( ′ ) Sudakov evolution with density matrix � dk 2 f q ( z/z ′ ) f V ( z ) ≈ T dz ′ dk 2 z ′ T fraction of events (per 50 GeV) Kane, Repko, Rolnick ’84; Dawson ’85 - γ → µ µ - + + /Z e e + R L L R -3 10 s (TeV) 2 4 6 8 10 12 7 10 100 TeV q q 5 10 coherent 3 10 W τ ± ± γ dL/d γ q qW -4 T 10 10 T ± - + W W qW B 0 /W 0 incoherent − 1 T T 10 L − γ /Z incoherent 3 10 - + W W − L L 5 200 400 600 800 1000 1200 1400 10 0.05 0.1 M(f f ) (GeV) τ = s/S Chen, Han, Tweedie ’16

  19. Electroweak showers: phenomenology 14/19 Decay of W ′ with m W ′ = 20 TeV into heavy quarks: with EW shower: with EW+QCD shower: fraction of events (per 200 GeV) fraction of events (per 200 GeV) 1 1 → → 20 TeV W’ t b , with EW FSR 20 TeV W’ t b , with EW+QCD FSR -1 -1 10 10 t b +X t b +X -2 -2 10 10 b b +X b b +X -3 -3 10 10 t t +X t t +X b t +X -4 -4 10 10 b t +X 0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22 M(Q Q ) (TeV) M(Q Q ) (TeV) Chen, Han, Tweedie ’16

  20. X-plosion: Strength in numbers

  21. Weak amplitudes at high energies 15/19 Higgs-plosion: φ ∗ → nφ in φ 4 theory: number of diagrams grows factorially √ � ( n − 1) / 2 � λ 3 λ � � A n = n ! 1 + n ( n − 1) Result at threshold: 2 m 2 8 π Voloshin ’92; Argyres, Kleiss, Papadopoulos ’92; Brown ’92; Smith ’92 n ! eventually overcomes λ n/ 2 yielding large cross-section Libanov, Rubakov, Son, Troitsky ’94; Son ’95 Khoze ’15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend