electroweak theory and higgs physics preliminary version
play

Electroweak Theory and Higgs Physics Preliminary Version Chris - PDF document

Electroweak Theory and Higgs Physics Preliminary Version Chris Quigg Fermilab quigg@fnal.gov LISHEP 2006 Rio de Janeiro http://boudin.fnal.gov/AcLec/AcLecQuigg.html 1 bis Chris Quigg Electroweak Theory LISHEP 2006 A Decade of Discovery


  1. Electroweak Theory and Higgs Physics Preliminary Version Chris Quigg Fermilab quigg@fnal.gov LISHEP 2006 · Rio de Janeiro http://boudin.fnal.gov/AcLec/AcLecQuigg.html 1 bis Chris Quigg Electroweak Theory · LISHEP 2006

  2. A Decade of Discovery Past . . . Electroweak theory → law of nature ✄ [ Z , e + e − , ¯ pp , νN , ( g − 2) µ , . . . ] Higgs-boson influence observed in the vacuum ✄ [EW experiments] Neutrino flavor oscillations: ν µ → ν τ , ✄ ν e → ν µ /ν τ [ ν ⊙ , ν atm , reactors] Understanding QCD ✄ [heavy flavor, Z 0 , ¯ pp , νN , ep , ions, lattice] Discovery of top quark [ ¯ pp ] ✄ Direct CP violation in K → ππ [fixed-target] ✄ B -meson decays violate CP [ e + e − → B ¯ B ] ✄ Flat universe dominated by dark matter, energy ✄ [SN Ia, CMB, LSS] Detection of ν τ interactions [fixed-target] ✄ Quarks & leptons structureless at TeV scale ✄ [mainly colliders] 2 bis Chris Quigg Electroweak Theory · LISHEP 2006

  3. A Decade of Discovery Past . . . Electroweak theory → law of nature ✄ [ Z , e + e − , ¯ pp , νN , ( g − 2) µ , . . . ] Higgs-boson influence observed in the vacuum ✄ [EW experiments] Neutrino flavor oscillations: ν µ → ν τ , ✄ ν e → ν µ /ν τ [ ν ⊙ , ν atm , reactors] Understanding QCD ✄ [heavy flavor, Z 0 , ¯ pp , νN , ep , ions, lattice] Discovery of top quark [ ¯ pp ] ✄ Direct CP violation in K → ππ [fixed-target] ✄ B -meson decays violate CP [ e + e − → B ¯ B ] ✄ Flat universe dominated by dark matter, energy ✄ [SN Ia, CMB, LSS] Detection of ν τ interactions [fixed-target] ✄ Quarks & leptons structureless at TeV scale ✄ [mainly colliders] 2 bis Chris Quigg Electroweak Theory · LISHEP 2006

  4. Goal: Understanding the Everyday ✄ Why are there atoms? ✄ Why chemistry? ✄ Why stable structures? ✄ What makes life possible? What would the world be like without a (Higgs) mechanism to hide electroweak symmetry and give masses to the quarks and leptons? Consider the effects of all the SU (3) c ⊗ SU (2) L ⊗ U (1) Y gauge symmetries. 3 bis Chris Quigg Electroweak Theory · LISHEP 2006

  5. Goal: Understanding the Everyday ✄ Why are there atoms? ✄ Why chemistry? ✄ Why stable structures? ✄ What makes life possible? What would the world be like, without a (Higgs) mechanism to hide electroweak symmetry and give masses to the quarks and leptons? Consider the effects of all the SU (3) c ⊗ SU (2) L ⊗ U (1) Y gauge symmetries. 3 bis Chris Quigg Electroweak Theory · LISHEP 2006

  6. Searching for the mechanism of electroweak symmetry breaking, we seek to understand why the world is the way it is. This is one of the deepest questions humans have ever pursued, and it is coming within the reach of particle physics. 4 bis Chris Quigg Electroweak Theory · LISHEP 2006

  7. Tevatron Collider is running now , breaking new ground in sensitivity 5 bis Chris Quigg Electroweak Theory · LISHEP 2006

  8. 6 bis Chris Quigg Electroweak Theory · LISHEP 2006

  9. Tevatron Collider in a Nutshell 980-GeV protons, antiprotons ( 2 π km) frequency of revolution ≈ 45 000 s − 1 392 ns between crossings (36 ⊗ 36 bunches) collision rate = L · σ inelastic ≈ 10 7 s − 1 c ≈ 10 9 km / h ; v p ≈ c − 495 km / h Record L init = 1 . 64 × 10 32 cm − 2 s − 1 [CERN ISR: pp , 1 . 4 ] p at Low β : 1 . 661 × 10 12 Maximum ¯ 7 bis Chris Quigg Electroweak Theory · LISHEP 2006

  10. The LHC will operate soon, breaking new ground in energy and sensitivity 30 June 2005 Gigi Rolandi - CERN 30 June 30 June 2005 2005 Gigi Rolandi - CERN Gigi Rolandi - CERN 30 June 2005 Gigi Rolandi - CERN 8 bis Chris Quigg Electroweak Theory · LISHEP 2006

  11. LHC in a nutshell 7-TeV protons on protons ( 27 km); v p ≈ c − 10 km / h Novel two-in-one dipoles ( ≈ 9 teslas) Startup: 43 ⊗ 43 → 156 ⊗ 156 bunches, L ≈ 6 × 10 31 cm − 2 s − 1 Early: 936 bunches, > 5 × 10 32 cm − 2 s − 1 [75 ns] L ∼ Next phase: 2808 bunches, L → 2 × 10 33 cm − 2 s − 1 25 ns bunch spacing > 10 34 cm − 2 s − 1 : Eventual: L ∼ 100 fb − 1 /year 9 bis Chris Quigg Electroweak Theory · LISHEP 2006

  12. Tentative Outline . . . ✄ SU (2) L ⊗ U (1) Y theory Gauge theories Spontaneous symmetry breaking Consequences: W ± , Z 0 /NC, H , m f ? Measuring sin 2 θ W in νe scattering GIM / CKM ✄ Phenomena at tree level and beyond Z 0 pole W mass and width Vacuum energy problem 10 bis Chris Quigg Electroweak Theory · LISHEP 2006

  13. . . . Outline ✄ The Higgs boson and the 1-TeV scale Why the Higgs boson must exist Higgs properties, constraints How well can we anticipate M H ? Higgs searches ✄ The problems of mass ✄ The EW scale and beyond Hierarchy problem Why is the EW scale so small? Why is the Planck scale so large? ✄ Outlook 11 bis Chris Quigg Electroweak Theory · LISHEP 2006

  14. General References ✄ C. Quigg, “Nature’s Greatest Puzzles,” hep-ph/0502070 ✄ C. Quigg, “The Electroweak Theory,” hep-ph/0204104 (TASI 2000 Lectures) ✄ C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions ✄ I. J. R. Aitchison & A. J. G. Hey, Gauge Theories in Particle Physics ✄ R. N. Cahn & G. Goldhaber, Experimental Foundations of Particle Physics ✄ G. Altarelli & M. Gr¨ unewald, “Precision Electroweak Tests of the SM,” hep-ph/0404165 ✄ F. Teubert, “Electroweak Physics,” ICHEP04 ✄ S. de Jong, “Tests of the Electroweak Sector of the Standard Model,” EPS HEPP 2005 Problem sets: http://lutece.fnal.gov/TASI/default.html 12 bis Chris Quigg Electroweak Theory · LISHEP 2006

  15. Our picture of matter Pointlike constituents ( r < 10 − 18 m) � � � � � � u c t d s b L L L � � � � � � ν e ν µ ν τ e − µ − τ − L L L Few fundamental forces, derived from gauge symmetries SU (3) c ⊗ SU (2) L ⊗ U (1) Y Electroweak symmetry breaking Higgs mechanism? 13 bis Chris Quigg Electroweak Theory · LISHEP 2006

  16. ν τ ν µ ν e τ L µ L e L t L c L u L b L s L d L 14 bis Chris Quigg Electroweak Theory · LISHEP 2006

  17. τ R ν 3 µ R ν 2 e R ν 1 b R t R s R c R ν 3 d R ν 2 u R ν 1 τ L µ L e L t L c L u L b L s L d L 15 bis Chris Quigg Electroweak Theory · LISHEP 2006

  18. SYMMETRIES = ⇒ INTERACTIONS Phase Invariance (Symmetry) in Quantum Mechanics QM STATE: COMPLEX SCHR¨ ODINGER WAVE FUNCTION ψ ( x ) OBSERVABLES � d n xψ ∗ Oψ � O � = ARE UNCHANGED UNDER A GLOBAL PHASE ROTATION ψ ( x ) → e iθ ψ ( x ) ψ ∗ ( x ) → e − iθ ψ ∗ ( x ) • Absolute phase of the wave function cannot be measured (is a matter of convention). • Relative phases (interference experiments) are unaffected by a global phase rotation. NEW θ ORIGINAL 16 bis Chris Quigg Electroweak Theory · LISHEP 2006

  19. GLOBAL ROTATION — SAME EVERYWHERE MIGHT WE CHOOSE ONE PHASE CONVENTION IN RIO AND ANOTHER IN BATAVIA? A DIFFERENT CONVENTION AT EACH POINT? ψ ( x ) → e iqα ( x ) ψ ( x ) 17 bis Chris Quigg Electroweak Theory · LISHEP 2006

  20. THERE IS A PRICE. Some variables (e.g., momentum) and the Schr¨ odinger equation itself contain derivatives. Under the transformation ψ ( x ) → e iqα ( x ) ψ ( x ) the gradient of the wave function transforms as ∇ ψ ( x ) → e iqα ( x ) [ ∇ ψ ( x )+ iq ( ∇ α ( x )) ψ ( x )] The ∇ α ( x ) term spoils local phase invariance. TO RESTORE LOCAL PHASE INVARIANCE . . . Modify the equations of motion and observables. Replace ∇ by ∇ + iq � A “Gauge-covariant derivative” If the vector potential � A transforms under local phase rotations as A ( x ) → � � A ′ ( x ) ≡ � A ( x ) − ∇ α ( x ) , then ( ∇ + iq � A ) ψ → e iqα ( x ) ( ∇ + iq � A ) ψ and ψ ∗ ( ∇ + iq � A ) ψ is invariant under local rotations. 18 bis Chris Quigg Electroweak Theory · LISHEP 2006

  21. NOTE . . . • � A ( x ) → � A ′ ( x ) ≡ � A ( x ) − ∇ α ( x ) has the form of a gauge transformation in electrodynamics. • The replacement ∇ → ( ∇ + iq � A ) corresponds p − q � to � p → � A FORM OF INTERACTION IS DEDUCED FROM LOCAL PHASE INVARIANCE = ⇒ MAXWELL’S EQUATIONS DERIVED FROM A SYMMETRY PRINCIPLE QED is the gauge theory based on U (1) phase symmetry 19 bis Chris Quigg Electroweak Theory · LISHEP 2006

  22. GENERAL PROCEDURE • Recognize a symmetry of Nature. • Build it into the laws of physics. (Connection with conservation laws) • Impose symmetry in stricter (local) form. = ⇒ INTERACTIONS • Massless vector fields (gauge fields) • Minimal coupling to the conserved current • Interactions among the gauge fields, if symmetry is non-Abelian Posed as a problem in mathematics, construction of a gauge theory is always possible (at the level of a classical L ; consistent quantum theory may require additional vigilance). Formalism is no guarantee that the gauge symmetry was chosen wisely. 20 bis Chris Quigg Electroweak Theory · LISHEP 2006

  23. The Crystal World 21 bis Chris Quigg Electroweak Theory · LISHEP 2006

  24. The Crystal World 22 bis Chris Quigg Electroweak Theory · LISHEP 2006

  25. The Crystal World 23 bis Chris Quigg Electroweak Theory · LISHEP 2006

  26. The Perfect World 24 bis Chris Quigg Electroweak Theory · LISHEP 2006

  27. The Real World 25 bis Chris Quigg Electroweak Theory · LISHEP 2006

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend