precision higgs physics a gateway to new physics
play

Precision Higgs physics: a gateway to New Physics Jonas M. Lindert - PowerPoint PPT Presentation

Precision Higgs physics: a gateway to New Physics Jonas M. Lindert SM@LHC 2018 Higgs-session Berlin, 10. April 2018 finding new physics might Finding the Higgs was easy be very tough. [CMS diphoton Higgs search,


  1. Precision Higgs physics: 
 a gateway to New Physics Jonas M. Lindert SM@LHC 2018 Higgs-session 
 Berlin, 10. April 2018

  2. …finding new physics might 
 Finding the Higgs was “easy”… be very tough. [CMS diphoton Higgs search, arXiv:1407.0558] [Grazzini et. al., 2016] ����� � � � ������������� �� � ������������������������ �� � � ������ � ������ � � �������� � � ������ � ������ �� � � � ������ � ������� � � ������ � ������� �� �� �� �� �� �� �� �� �� ���� ���� ���� ���� �� ���� ���� ��� ���� ���� ���� ���� ���� ���� ���� � � � � ������� Look for BSM effects in small deviations from Bump hunting: little to no theoretical SM predictions: input needed. → Higgs processes natural place to look at → good control on theory necessary! 2 Jonas M. Lindert

  3. “good control” ? Imagine to have new physics at a (heavish) scale Λ NP Λ NP Typical modification to observable direct w.r.t. standard model prediction: bounds δ O ~ Q 2 / Λ NP 2 ~ TeV To gain over direct bounds: I N THE T AIL : SM ~ v.e.v. Q ≳ 500 G E V → I N THE BULK : Q~ M H → few percent ~10-20% [F. Caola, Moriond ’17] 3 Jonas M. Lindert

  4. Outline ∆ TH ~5% ∆ TH ~0.5% New! New! • VBF-H: differential NNLO revised • H-inc: mixed QCD-EW H New! • H-pT: NNLO+N3LL New! • H-pT: t & b NLO mass effects ∆ TH ~5% ∆ TH ~1-2% • VH(+jet) @ NLOPS QCD+EW New! New! • ttH: ttbb background modelling 4 Jonas M. Lindert

  5. Outline ∆ TH ~5% ∆ TH ~0.5% • VBF-H: differential NNLO revised New! New! • H-inc: mixed QCD-EW H New! • H-pT: NNLO+N3LL New! • H-pT: t & b NLO mass effects ∆ TH ~5% ∆ TH ~1-2% • ttH: ttbb background modelling New! • VH(+jet) @ NLOPS QCD+EW New! 5 Jonas M. Lindert

  6. inclusive-H [Anastasiou et al.;2016] σ = 48 . 58 pb +2 . 22 pb (+4 . 56%) 13 TeV: − 3 . 27 pb ( − 6 . 72%) (theory) ± 1 . 56 pb (3 . 20%) (PDF+ α s ) . α S2 48 . 58 pb = 16 . 00 pb (+32 . 9%) (LO, rEFT) + 20 . 84 pb (+42 . 9%) (NLO, rEFT) − 2 . 05 pb ( − 4 . 2%) (( t, b, c ), exact NLO) α S3 + 9 . 56 pb (+19 . 7%) (NNLO, rEFT) [Dawson; 1991 Djouadi, Spira, Zerwas;1991] + 0 . 34 pb (+0 . 2%) (NNLO, 1 /m t ) + 2 . 40 pb (+4 . 9%) (EW, QCD-EW) α S4 (N 3 LO, rEFT) + 1 . 49 pb (+3 . 1%) [Harlander, Kilgore; 2002 [Anastasiou, Melnikov; Anastasiou, Melnikov;2002] Harlander, Kilgore] Obtained through a series expansion around the soft limit α S5 1 − z = 1 − m 2 H / ˆ s [Anastasiou et al] [Anastasiou et al.;2015] • remaining uncertainties are at the ~1%-level (and basically everything becomes relevant): δ (scale) δ (trunc) δ (PDF-TH) δ (EW) δ ( t, b, c ) δ (1 /m t ) +0 . 10 pb ± 0.18 pb ± 0.56 pb ± 0.49 pb ± 0.40 pb ± 0.49 pb − 1 . 15 pb +0 . 21% ± 0 . 37% ± 1 . 16% ± 1% ± 0 . 83% ± 1% − 2 . 37% 6 Jonas M. Lindert

  7. inclusive-H [Anastasiou et al.;2016] σ = 48 . 58 pb +2 . 22 pb (+4 . 56%) 13 TeV: − 3 . 27 pb ( − 6 . 72%) (theory) ± 1 . 56 pb (3 . 20%) (PDF+ α s ) . α S2 48 . 58 pb = 16 . 00 pb (+32 . 9%) (LO, rEFT) + 20 . 84 pb (+42 . 9%) (NLO, rEFT) − 2 . 05 pb ( − 4 . 2%) (( t, b, c ), exact NLO) α S3 + 9 . 56 pb (+19 . 7%) (NNLO, rEFT) [Dawson; 1991 Djouadi, Spira, Zerwas;1991] + 0 . 34 pb (+0 . 2%) (NNLO, 1 /m t ) + 2 . 40 pb (+4 . 9%) (EW, QCD-EW) α S4 (N 3 LO, rEFT) + 1 . 49 pb (+3 . 1%) [Harlander, Kilgore; 2002 [Anastasiou, Melnikov; Anastasiou, Melnikov;2002] Harlander, Kilgore] Obtained through a series exact! expansion around the soft limit α S5 1 − z = 1 − m 2 H / ˆ s [Anastasiou et al] [Anastasiou et al.;2015 
 Mistlberger; 2018 ] • remaining uncertainties are at the ~1%-level (and basically everything becomes relevant): δ (scale) δ (trunc) δ (PDF-TH) δ (EW) δ ( t, b, c ) δ (1 /m t ) +0 . 10 pb ± 0.18 pb ± 0.56 pb ± 0.49 pb ± 0.40 pb ± 0.49 pb − 1 . 15 pb +0 . 21% ± 0 . 37% ± 1 . 16% ± 1% ± 0 . 83% ± 1% − 2 . 37% 7 Jonas M. Lindert

  8. inclusive-H [Anastasiou et al.;2016] σ = 48 . 58 pb +2 . 22 pb (+4 . 56%) 13 TeV: − 3 . 27 pb ( − 6 . 72%) (theory) ± 1 . 56 pb (3 . 20%) (PDF+ α s ) . α S2 48 . 58 pb = 16 . 00 pb (+32 . 9%) (LO, rEFT) + 20 . 84 pb (+42 . 9%) (NLO, rEFT) − 2 . 05 pb ( − 4 . 2%) (( t, b, c ), exact NLO) α S3 + 9 . 56 pb (+19 . 7%) (NNLO, rEFT) [Dawson; 1991 Djouadi, Spira, Zerwas;1991] + 0 . 34 pb (+0 . 2%) (NNLO, 1 /m t ) + 2 . 40 pb (+4 . 9%) (EW, QCD-EW) α S4 (N 3 LO, rEFT) + 1 . 49 pb (+3 . 1%) [Harlander, Kilgore; 2002 [Anastasiou, Melnikov; Anastasiou, Melnikov;2002] Harlander, Kilgore] Obtained through a series exact! expansion around the soft limit α S5 1 − z = 1 − m 2 H / ˆ s [Anastasiou et al] [Anastasiou et al.;2015 
 Mistlberger; 2018 ] • remaining uncertainties are at the ~1%-level (and basically everything becomes relevant): δ (scale) δ (trunc) δ (PDF-TH) δ (EW) δ ( t, b, c ) δ (1 /m t ) +0 . 10 pb ± 0.18 pb ± 0.56 pb ± 0.49 pb ± 0.40 pb ± 0.49 pb − 1 . 15 pb +0 . 21% ± 0 . 37% ± 1 . 16% ± 1% ± 0 . 83% ± 1% − 2 . 37% 8 Jonas M. Lindert

  9. inclusive-H: mixed QCD-EW @ NLO [Bonetti, Melnikov, Tancredi; ‘17+’18 ] g V=W,Z • requires very complicated three-loop virtuals and two-loop reals. q g H • literature result [Anastasiou, Boughezal, Petriello; ’09 ] based on 
 g unphysical limit MV ≫ MH yields 5(±1)% contribution. g • this limit corresponds to a point-like ggH QCD-EW coupling. V ????? • Two-loop reals not yet available, but (improved) soft-gluon 
 q g H approximation known to be quite reliable for inclusive Higgs. g • Only non-universal ingredient required for soft gluon approximaton : 
 three-loop virtuals 
 QCD / EW = 39 . 0 pb . } σ LO σ LO QCD = 20 . 6 pb , QCD / EW = 21 . 7 pb , • Result: σ (N)LO QCD / EW / σ (N)LO = 5 . 3 − 5 . 4% QCD σ NLO σ NLO QCD = 37 . 0 pb , consistent! • Further improvements and updated uncertainty estimate requires computation of the very challenging two-loop reals! 9 Jonas M. Lindert

  10. Higgs-pT / Higgs+jet ~ c t X • Motivation: ? ~ c g ‣ Higgs-pT sensitive probe of New Physics 
 H ~ c g ➜ In particular: disentangle c g vs. c t ‣ Possibility to constrain the charm-Yukawa coupling 
 ����� � � � ������������� [Bishara, Haisch, Monni, Re; ’16] �� � ������������������������ �� � � ������ � ������ � � �������� • When we are inclusive in the radiation recoiling � � ������ � ������ �� � � � ������ � ������� � � ������ � ������� against the Higgs we can measure its pT. [Grazzini et. al., 2016] �� �� • At LO in inclusive-H: pTH = 0 
 �� �� ➜ Consider Higgs+jet production �� �� �� �� �� ���� ���� ���� ���� • Two regimes: �� ���� ���� ��� ���� ���� ���� ���� ���� ���� ���� � � � � ������� + ∞ p T ⌧ m H p T ≥ m H ‣ resummation mandatory ‣ fixed-order reliable [Plot: Grazzini] ‣ ggH point-like ‣ ggH NOT point-like ‣ bottom mass effects relevent ∞ - 10 Jonas M. Lindert

  11. Higgs-pT: higher-order corrections full theory: loop-induced HEFT: tree-level at LO integrate-out heavy quarks Bottleneck: 
 Bottleneck: IR subtraction massive two-loop amplitudes NLO NNLO � � � � � � � ��� � � � � � � � ��� � � � � � � � ��� � � ���� ��� �� � �� ��� � � ���� ��� �� � �� ��� � � ���� ��� �� � �� ��� ������� ������� ������� [Chen et.al.; ’16] ����� ���� H ���� ��� � � ��� ��� � � [Chen et.al.; ’14+‘16 �� � �� � �� � �� ��� � � �� �������� �� � � � ���� �� ���� � �� � � � ���� Boughezal et. al.; ’15, 
 � � � ���� � � � � � � � � � ���� � � � � � ��������� ���� ��� ����� � � �� � ������������ � �� � � �� � �� � ��� Caola et.al.; ’15] g ����� � �� �� H H �� �� g ����� �� ���� � � Ansätze: � � ����� �� ��� • analytical: very hard, planar MI known ��� [Bonciani et. al., ’16] ��� ��� ��� • numerical: very CPU/GPU intensive [Jones et. al., ’18] ��� � �� ��� ��� ��� pTH �� ����� • expansions: has to be performed carefully, very versatile � � [Melnikov et. al., ’16+’17] perturb. uncertainties in HEFT under very good control: ‣ ~10% scale variation Idea: QCD corrections factorize 
 ‣ stable shapes ➜ apply K-factors from HEFT to lower order predictions in full theory ➜ check!! NNLO+NXLL 11 Jonas M. Lindert

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend