sensitivity to new physics of precision higgs and ew
play

SENSITIVITY TO NEW PHYSICS OF PRECISION HIGGS AND EW OBSERVABLES - PowerPoint PPT Presentation

SENSITIVITY TO NEW PHYSICS OF PRECISION HIGGS AND EW OBSERVABLES JiJi Fan Syracuse University FCC week, Washington DC, 3/26/15 OUTLINE Higgs Coupling Measurements at Future Colliders EWPT at Future Colliders New Physics Reach


  1. SENSITIVITY TO NEW PHYSICS OF PRECISION HIGGS AND EW OBSERVABLES JiJi Fan � Syracuse University � � FCC week, Washington DC, 3/26/15

  2. OUTLINE Higgs Coupling Measurements at Future Colliders � EWPT at Future Colliders � New Physics Reach and Complementarity between Di ff erent Probes: � 1. Supersymmetry � 2. Composite Higgs � 3. Electroweak phase transition � 4. Higgs portal

  3. Higgs Coupling Measurements at Future Colliders Facility TLEP (4 IP) √ s (GeV) 240 350 L dt (fb − 1 ) R 10000 +2600 Precision of Higgs couplingmeasurement ( Model - IndependentFit ) 1 P ( e − , e + ) ( (0 , 0) (0 , 0) ILC 250 + 500 GeV at 250 + 500 fb - 1 wi / wo HL - LHC 1.9% 1.0% Γ H CEPC 250 GeV at 5 ab - 1 wi / wo HL - LHC 1.7% 1.5% 0.1 Relative Error κ γ 1.1% 0.8% κ g 0.85% 0.19% κ W 0.16% 0.15% κ Z 10 - 2 6.4% 6.2% κ µ 0.94% 0.54% κ τ 1.0% 0.71% 10 - 3 κ c � � Br ( inv ) � � � b � c � g � W � � � Z � � 0.88% 0.42% κ b 13% κ t − CEPC/SppC preCDR 0 . 19% < 0 . 19% BR inv snowmass Higgs report � 1310.8361

  4. Higgs Coupling Measurements at Future Colliders Facility TLEP (4 IP) √ s (GeV) 240 350 L dt (fb − 1 ) R 10000 +2600 Precision of Higgs couplingmeasurement ( Model - IndependentFit ) 1 P ( e − , e + ) ( (0 , 0) (0 , 0) ILC 250 + 500 GeV at 250 + 500 fb - 1 wi / wo HL - LHC 1.9% 1.0% Γ H CEPC 250 GeV at 5 ab - 1 wi / wo HL - LHC 1.7% 1.5% 0.1 Relative Error κ γ 1.1% 0.8% κ g 0.85% 0.19% κ W 0.16% 0.15% κ Z 10 - 2 6.4% 6.2% κ µ 0.94% 0.54% κ τ 1.0% 0.71% 10 - 3 κ c � � Br ( inv ) � � � b � c � g � W � � � Z � � 0.88% 0.42% κ b 13% κ t − CEPC/SppC preCDR 0 . 19% < 0 . 19% BR inv snowmass Higgs report � 1310.8361

  5. Higgs self - coupling: indirectly inferred from limit on 𝜆 Z with some � assumptions McCullough 2014 e + e + Z Z h h e − e − ∆ σ Zh = σ Zh − 1 = 2 ∆ κ Z + 0 . 014 ∆ λ hhh . σ SM Zh 100 TLEP240 + 350GeV 240 = 0.4 % , d s 350 = 1 % d s HL - LHC 50 80 HL-LHC (3ab -1 ) ILC1TeV 70 CEPC1 (1ab -1 ) CEPC3 (3ab -1 ) d h @ % D CEPC5 (5ab -1 ) 60 ILC1TeV - LU 0 CEPC10 (10ab -1 ) SPPC (3ab -1 ) 50 Precision (%) 40 30 - 50 20 10 0 - 100 HL-LHC CEPC1 CEPC3 CEPC5 CEPC10 SPPC - 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5 CEPC/SppC preCDR d Z @ % D

  6. Direct measurement g H g H H Q Q g g H H Expected per-experiment precision on the triple-Higgs boson coupling. ILC numbers include Table 1-24. bbbb and bbWW ∗ final states and assume ( e − , e + ) polarizations of ( − 0 . 8 , 0 . 3) at 500 GeV and ( − 0 . 8 , 0 . 2) at 1000 GeV. ILC500-up is the luminosity upgrade at 500 GeV, not including any 1000 GeV running. ILC1000- up is the luminosity upgrade with a total of 1600 fb − 1 at 500 GeV and 2500 fb − 1 at 1000 GeV. CLIC numbers include only the bbbb final state and assume 80% electron beam polarization. HE-LHC and VLHC numbers ‡ ILC luminosity upgrade assumes an are from fast simulation [102] and include only the bb γγ final state. extended running period on top of the low luminosity program and cannot be directly compared to CLIC numbers without accounting for the additional running period. HL-LHC ILC500 ILC500-up ILC1000 ILC1000-up CLIC1400 CLIC3000 HE-LHC VLHC √ s (GeV) 14000 500 500 500/1000 500/1000 1400 3000 33,000 100,000 R 1600 ‡ 1600+2500 ‡ L dt (fb − 1 ) 3000/expt 500 500+1000 1500 +2000 3000 3000 50% 83% 46% 21% 13% 21% 10% 20% 8% λ snowmass Higgs report � 1310.8361

  7. EWPT at Future Colliders Global Fit of Electroweak Observables with Oblique Corrections Five observables free to vary in the fit: top mass, Z boson mass, � Higgs mass, strong coupling constant at Z pole, hadronic contribution � to the running of α ; � � Three derived observables: W boson mass, e ff ective weak mixing angle, � Z boson decay width

  8. Global Fit of Electroweak Observables with Oblique Corrections ✓ ◆ ✓ 2 α ◆ � α � 2 , h † W iµ ν σ i hB µ ν � T � h † D µ h � L oblique = S 4 sin θ W cos θ W v 2 v 2 0.2 Current 0.04 ILC LHC Prospect 0.15 TLEP - Z ILC TLEP - W TLEP - Z TLEP - t 0.1 TLEP - W 0.02 TLEP - t 0.05 0. 0. T T - 0.05 U = 0 - 0.02 U = 0 - 0.1 68 % C.L. 68 % C.L. - 0.15 - 0.04 - 0.2 - 0.2 - 0.15 - 0.1 - 0.05 0. 0.05 0.1 0.15 0.2 - 0.04 - 0.02 0. 0.02 0.04 S S Fan, Reece and W ang 1411.1054

  9. CEPC EWPT Electroweak Fit: S and T Oblique Parameters Electroweak Fit: S and T Oblique Parameters 0.2 0.04 Current ( 95 %) CEPC baseline ( 68 %) Current ( 68 %) Improved � Z ( 68 %) CEPC ( 95 %) Improved � Z , m t ( 68 %) CEPC ( 68 %) 0.1 0.02 0.00 0.0 T T - 0.02 - 0.1 - 0.04 - 0.2 - 0.04 - 0.02 0.00 0.02 0.04 - 0.2 - 0.1 0.0 0.1 0.2 S S Fan, Reece and W ang 2014; CEPC/SppC preCDR

  10. To do list for a successful electroweak program � � What are the most important observables whose precisions need to be improved to achieve the best sensitivity of EWPT? � What levels of precision are desirable for these observables? � � Decompose the fits into steps: for example, first vary one parameter � at a time � 0.08 0.08 0.06 0.06 0.04 0.04 S = 0 T = 0 0.02 m W H solid L 0.02 m W H solid L sin 2 q eff H Dashed L sin 2 q eff H Dashed L 0. 0. G z H Dotted L G z H Dotted L T S m t H Dot - Dashed L m t H Dot - Dashed L - 0.02 - 0.02 - 0.04 - 0.04 - 0.06 - 0.06 - 0.08 - 0.08 0.2 0.4 0.6 0.8 1. 0.2 0.4 0.6 0.8 1. d d d now d now 2.0 2.0 = 0 = 0 0.03 0.025 0.025 1.0 1.0 0.012 eV D eV D 0.0085 0.023 0.0082 0.1 0.1 0.01 0.1 1.0 0.01 0.1 1.0 eV D eV D

  11. To do list for a successful electroweak program Determine m W to better than 5 MeV precision ( 15 MeV now ) and sin 2 θ to better than 2 ⨉ 10 - 5 precision ( 16 ⨉ 10 - 5 now ) ; � � Determine m t to 100 MeV precision ( 0.76 GeV now ) and m Z to 500 KeV precision ( 2.1 MeV now ) . � � The precision goals apply to both experimental and theory uncertainties. For theory uncertainties, this means for m W , sin 2 θ , complete three - loop SM electroweak correction computations are desirable ( two - loop calculations so far ) .

  12. New Physics Reach: natural SUSY ( stop + Higgsino sector ) Lepton colliders are limited in kinematic reach of stops � compared to proton colliders; � � On the other hand, stops can be hidden due to some � non - minimal decay modes and/or kinematics of the decay products ( RPV , stealth SUSY , folded SUSY … )� � Precision measurements at lepton colliders could provide powerful complementary probes independent of the details of stop decays. � �

  13. New Physics Reach: natural SUSY ( stop + Higgsino sector ) ✓ 2 α ◆ � � 2 , � h † D µ h � � T v 2 h † h † h † h h h ˜ t R y 2 y 2 X t X t t t ˜ ˜ ˜ ˜ + + Q 3 Q 3 Q 3 Q 3 X t X t X t X t y 2 t ˜ ˜ t R t R h † h † h † h h h ! m 4 m 2 t X 2 t t T ⇡ + O . 16 π sin 2 θ W m 2 4 π m 2 Q 3 m 2 W m 2 ˜ u 3 ˜ ˜ Q 3

  14. h † h h X t h † ˜ ˜ Q 3 ˜ t R Q 3 y 2 X t t B, W , ˜ + W B W B t R X t ˜ ˜ ˜ Q 3 t R Q 3 ˜ Q 3 X t h h † rs i ∂ ν B µ ν h † ↔ ✓ ◆ α D µ h h † W iµ ν σ i hB µ ν � = S 4 sin θ W cos θ W v 2 / µ ν h † σ i ↔ and iD ν W i D µ h , w ! m 2 m 2 t X 2 S ⇡ � 1 Henning, Lu, Murayama � t t + O . m 2 4 π m 2 Q 3 m 2 6 π 2014 ˜ ˜ u 3 ˜ Q 3 b L ˜ H − u m ˜ y 2 µ ν Q † W i 3 σ i σ µ iD ν Q 3 log tR µ . t R b ˜ Z t R m ˜ t 2 R ˜ H + u b L

  15. h † h h ˜ ˜ t R Q 3 y 2 X t t H † HG 2 g g g g + X t ˜ ˜ Q 3 t R ˜ Q 3 , ˜ t R h † c ˜ ! t m 2 + m 2 − m 2 t X 2 ≈ 1 r ˜ hgg t t t t , stop contribution to hgg coupling G ≡ c SM m 2 m 2 m 2 t 1 m 2 4 ˜ ˜ ˜ ˜ hgg t 1 t 2 t 2 Other corrections to precision observables: � wavefunction renormalization of the Higgs boson � ( Craig, Englert, McCullough 2013 )� b to s gamma, � triple gauge coupling, � running of the gauge couplings ( for hadron collider ) . � ( Alves , Galloway, Ruderman , W alsh 2014 ) �

  16. �������� �������� � � = � 2000 T parameter � - � � � ( ������������ ) ����� �������� ( ����������� ) 1500 � � ~ = �� � [ ��� ] Physical stop masses 1000 hgg coupling ~ � � ~ = �� � � 500 � � ~ = �� 500 1000 1500 2000 � [ ��� ] � � ~ ��� ��� / ���� �������� � � = � ����� �������� � � = � ��� - ��� �������� � � = � 2000 2000 2000 � - � � � ( ���������� ) � - � � � ( ������������� ) � - � � � ( ������������� ) ����� �������� ( ��������� ) ����� �������� ( ������������ ) ����� �������� ( ������������ ) 1500 1500 1500 � � ~ = �� � � ~ = �� � � ~ = �� � [ ��� ] � [ ��� ] � [ ��� ] 1000 1000 1000 ~ ~ ~ � � � � � � � � ~ = �� � � ~ = �� � � ~ = �� 500 500 500 ~ = �� ~ = �� ~ = �� � � � � � � 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 � [ ��� ] � [ ��� ] � [ ��� ] � � � � � � ~ ~ ~ Fan, Reece, W ang 1412.3107

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend