electromagnetic duality in ads qhe
play

Electromagnetic duality in AdS/QHE: magnetic monopoles and the - PowerPoint PPT Presentation

Electromagnetic duality in AdS/QHE: magnetic monopoles and the quantum Hall effect Brian Dolan National University of Ireland, Maynooth and Dublin Institute for Advanced Studies Allan Bayntun 1 , Cliff Burgess 1 , 2 and Sung-Sik Lee 1 1


  1. Electromagnetic duality in AdS/QHE: magnetic monopoles and the quantum Hall effect Brian Dolan National University of Ireland, Maynooth and Dublin Institute for Advanced Studies Allan Bayntun 1 , Cliff Burgess 1 , 2 and Sung-Sik Lee 1 1 Perimeter Institute, 2 McMaster University, Canada AdS4/CFT3 and the Holographic States of Matter Galileo Galilei Institute for Theoretical Physics 3rd November 2010 Brian Dolan 0

  2. Outline The Quantum Hall effect Review of QHE Modular symmetry Quantum phase transitions and temperature flow Selection rule AdS/CFT correspondence Duality in bulk theory Schwinger-Zwanziger quantisation Bulk solution and scaling exponents Brian Dolan 0

  3. The Classical Hall Effect Edwin Hall (1879) B I I W L p-type n-type ◮ J α = σ αβ E β ( σ xx = σ yy ). ◮ z = x + iy ⇒ ρ := ρ xy + i ρ xx , σ = σ xy + i σ xx = − 1 /ρ . ◮ Classically: ρ cl xy = − B en , ρ cl m xx = e 2 n τ c , τ c = collision time. Im ( ρ ) ≥ 0 ⇔ Im ( σ ) ≥ 0. ◮ Brian Dolan 1

  4. The Quantum Hall Effect von Klitzing (1980); Tsui + Störmer (1982) ρ xy 1 1/2 1/3 1/4 1/5 B ◮ For low T , high purity and high particle density, resistance is quantised: R H = h / e 2 = 25 . 812807449 ( 86 ) k Ω . � h � � e 2 � ◮ ρ = 1 , p ∈ Z ; σ = p , von Klitzing (1980). p e 2 h Integer QHE � e 2 � ◮ σ = p , p , q ∈ Z , q odd, Tsui + Störmer (1982). q h Fractional QHE Brian Dolan 2

  5. Stormer (1992) Brian Dolan 3

  6. The Quantum Hall Effect Energy 4 ν=3 ω c = eB m h ω c 2 1 ◮ Free particles in transverse B ⇒ Harmonic Oscillator. � � � �� e 2 � � � eB � = � B ◮ Degeneracy/unit area: g = . h e h � h � � e 2 � ◮ Filling factor, ν := n / g = ne ⇒ | σ cl xy | = ν , ( σ xx = 0). e 2 B h ◮ Filled Landau Levels inert ⇒ pseudo-particle excitations are � e 2 � the same for σ → σ + 1, h = 1 . ◮ Particle-hole symmetry (one-third full = one-third empty): σ → 1 − ¯ σ . Brian Dolan 4

  7. The Law of Corresponding States Kivelson, Lee and Zhang (1992); Lütken+Ross (1992) ◮ Physics of pseudo-particle excitations is symmetric under Landau level addition: σ → σ + 1 − 1 − 1 → Flux attachment: σ + 2 σ Particle-Hole Interchange: σ → 1 − σ Modular Group: σ → a σ + b Γ 0 ( 2 ) ⊂ Γ( 1 ) : c σ + d a , b , c , d ∈ Z , ad − bc = 1 with c even. � a � b Γ 0 ( 2 ) : γ = ∈ Sl ( 2 , Z ) , det γ = 1; c even. c d Γ( 1 ) , Fradkin+Kivelson (1996); Γ( 2 ) , Georgelin et al (1996) Witten [hep-th/0307041]; Leigh+Petkou [hep-th/0309171]. Brian Dolan 5

  8. Quantum Phases ◮ Hall Plateaux ⇔ Phases of 2-D “Electron” Gas. ◮ Law of Corresponding States: maps between phases. ◮ σ xy : p / q → p ′ / q ′ is a Quantum Phase Transition, Fisher (1990). ◮ For σ xy = 1 / q , quasi-particles have electric charge e / q , Laughlin (1983). ◮ Second order phase transition between phases: ξ ≈ | ∆ B | − ν ξ , ∆ B = B − B c . ◮ Simple scaling ⇒ σ ( T , ∆ B , n , . . . ) = σ (∆ B / T κ , n / T κ ′ , . . . ) ◮ Superuniversality: κ and κ ′ are the same for all transitions. ◮ σ flows as T is varied. ◮ Experimentally: κ = 0 . 42 ± 0 . 01 (Wanli et al (2009)) Brian Dolan 6

  9. Temperature flow Burgess+Lütken (1997), BD (1999), Lütken+Ross (2009). ◮ Attractive fixed points at σ xy = p / q , q odd; repulsive points for q even. ◮ Fractal structure near real axis (no true fractals in Nature). (Wigner crystal for σ xy < 1 7 ; � ω c < k B T ( σ xy >> 1).) Brian Dolan 7

  10. σ (∆ B / T κ , n / T κ ′ ) S.S. Murzin et al (2002) Brian Dolan 8

  11. 0.2 (a) 2 /h) 0.1 σ xx (e 0.0 1/5 1/3 2/5 1/2 3/5 2/3 0 1/4 0.2 (b) 2 /h) 0.1 σ xx (e 0.0 1/5 1/4 1/3 2/5 1/2 3/5 2/3 0 2 /h) σ xy (e S.S. Murzin et al., (2005) Brian Dolan 9

  12. Selection Rule σ 1+i 3+i 2 2 3+i 10 0 1 2 ◮ Any σ xy : p q → p ′ q ′ can be obtained from σ : 0 → 1 by some γ ∈ Γ 0 ( 2 ) , � p ′ − p � p q , γ ( 1 ) = p ′ γ ( 0 ) = p q ′ ⇒ γ = , det γ = 1 ⇒ q ′ − q q ◮ Selection Rule: p ′ q − pq ′ = 1 BPD (1998). Brian Dolan 10

  13. Stormer (1992) Brian Dolan 11

  14. AdS/CFT Correspondence ◮ AdS/CFT: ( 2 + 1 ) -d sample is boundary of ( 3 + 1 ) -d gravity coupled to matter. ◮ QHE: strongly interacting electrons in 2 + 1 dimensions. ◮ Conductivity is dimensionless ⇒ CFT in ( 2 + 1 ) -d. ◮ Use classical gravity + matter in ( 3 + 1 ) -d bulk. ◮ Bulk theory: AdS 4 -black-hole-dyon (AdS 4 -Reissner-Nordström) coupled to U ( 1 ) gauge theory with charged matter. Hartnoll+Kovtun [0704.1160]; Keski-Vakkuri+Per Kraus [0905.4538]. Brian Dolan 12

  15. Electromagnetic duality in bulk ◮ Include dilaton φ and axion χ in bulk: � � 1 � �� � R − 2 Λ − 1 ∂φ.∂φ + e 2 φ ∂χ.∂χ S = 2 κ 2 2 � √− gd 4 x − 1 2 e − φ F 2 − χ F µν = 1 2 F � ( � ǫ µνρσ F √− g F ρσ ) 2 ◮ Constitutive relations: D i = G i 0 , H i = 1 2 ǫ ijk G jk � D = e − φ E + χ B ∂ L 2 G µν := − √− g ⇒ H = e − φ B − χ E ∂ F µν ◮ Define τ := χ + ie − φ ; F = F − i � F and G = − � G − iG ◮ Equations of motion invariant under Sl ( 2 , R ) , ( ad − bc − 1 ) . � G � � a � � G � τ → a τ + b b Gibbons+ c τ + d , → F c d F Rasheed (1995) � E � � cos α � � E � − sin α ◮ Generalises EM duality: → . B sin α cos α B Brian Dolan 13

  16. Modular symmetry ◮ Dyons { Q , M } , { Q ′ , M ′ } ⇒ Q ′ M − M ′ Q = 2 π N � n m n ′ e − n ′ Q = n e e , M = n m ( h / e ) ⇒ m n e = N ◮ Dirac-Schwinger-Zwanziger quantisation condition: semi-classically, Sl ( 2 , R ) → Sl ( 2 , Z ) . ◮ Generalises Dirac quantisation condition: for { Q ′ , 0 } and { 0 , M } , Q ′ M = 2 π N � , SO ( 2 ) → Z 2 . ◮ In full quantum theory expect a sub-modular group, e.g. Γ( 2 ) for N = 2 SUSY Yang-Mills, Seiberg+Witten (1994). Brian Dolan 14

  17. Bulk theory ◮ Bulk metric: ( Λ = − 3 L 2 , v = L r ) � � f ( v ) v 2 + dx 2 + dy 2 − f ( v ) dt 2 dr 2 ds 2 = L 2 λ 2 v 2 z + v 2 ◮ v → 0 ( r → ∞ ) is UV-limit of ( 2 + 1 ) -d theory. ◮ z : Lifshitz scaling exponent ( x → ℓ x , y → ℓ y , t → ℓ z t ). | f ′ ( v h ) | ◮ f ( v h ) = 0 ⇒ finite temperature, T = L . 4 π v z − 1 h ◮ Matter: classical Sl ( 2 , R ) symmetry � Maxwell Gibbons+ Einstein-dilaton-axion- DBI Rasheed (1995) ◮ � �� � � � − √− g d 4 x g µν + ℓ 2 e − φ/ 2 F µν S U ( 1 ) = −T − det � d 4 x √− g χ F µν � − 1 F µν . 4 Brian Dolan 15

  18. Scaling exponents from AdS/CFT ◮ Calculate CFT conductivity using probe brane ⇒ � � B n σ z , 2 2 T T z Karch+O’Bannon [0705.3870]; O’Bannon [0708.1994]; Hartnoll et al [0912.1061]; Goldstein et al [0911.3589; 1007.2490]. ◮ Bulk solution (Taylor [0812.0530]) : χ = 0, � v � z + 2 F vt = Q v 2 e − φ = v 4 , f ( v ) = 1 − , L 2 v h ⇒ Sl ( 2 , R ) z = 5. Scaling dimension (Bayntum, Burgess, Lee+BPD, arXiv:[1007.1917]) κ = 2 ⇒ z = 5 z = 0 . 4 Brian Dolan 16

  19. Summary ◮ Modular transformations, σ → a σ + b c σ + d , map between phases of the QHE ( σ = σ xy + i σ xx ). ◮ The map is a symmetry of QHE vacua. ◮ Fractional charges in the quantum Hall effect are analogous to the Witten effect in 4-dimensions. ◮ 4-d bulk theory with electromagnetic duality, Sl ( 2 , R ) → Γ ⊂ Sl ( 2 , Z ) / Z 2 can give AdS/CFT with QHE in 2 + 1-d. ◮ Probe brane in bulk gives information about conductivity in CFT. ◮ Parameters in bulk solution ⇔ exponents in CFT, κ = 2 / 5. Brian Dolan 17

  20. The symmetries of the modular group are beautifully exhibited by transforming to z = 1 + i σ 1 − i σ , (Poincaré map): ⌊ z ⌊ σ − →

  21. Maxwell - Chern - Simons Theory ◮ Classical relation ( J 0 = en and σ xx = 0) B = − en ρ cl xy ⇒ σ cl xy B = J 0 from − σ xy A 0 B + A 0 J 0 + · · · ⇒ L eff [ A 0 ] = − σ xy 2 ǫ µνρ A µ ∂ ν A ρ + A µ J µ + · · · . L eff [ A ] = ◮ Include Ohmic conductivity, σ xx = i lim ω → 0 ( ωǫ ( ω )) , L eff [ A ] = − ǫ 4 F 2 − σ xy 2 ǫ µνρ A µ ∂ ν A ρ + A µ J µ + · · · , L eff [ A ] ≈ i σ xx 4 ω F 2 − σ xy 4 ǫ µνρ A µ F νρ + A µ J µ + · · · . Brian Dolan 21

  22. Statistical Gauge Field x i − x j x i x j i ϑ � π (Σ i < j φ ij ) Ψ( x 1 , . . . , x N ) Ψ( x 1 , . . . , x N ) = e φ ij O ◮ Interchange i ↔ j , φ ij → φ ij + π ⇒ phase changes by ϑ . ◮ ϑ = 2 π k , identity; ϑ = π ( 2 k + 1 ) , Fermions ↔ Bosons. ◮ In Hamiltonian, − i � ∇ − e A → − i � ∇ − e ( A + a ) : � � a α ( x i ) = � ϑ β a α ( x i ) = 2 � ϑ α φ ij ⇒ ǫ βα ∇ ( i ) ∇ ( i ) δ ( x i − x j ) . e π e j � = i j � = i b ( x ) := ǫ βα ∇ β a α ( x ) = 2 � ϑ e n ( x ) . ◮ Brian Dolan 22

  23. Composite fermions and flux attachment B ϑ = − 2 π � h � � h � ( ϑ = − 2 π ) n = ϑ ◮ b := ǫ βα ∇ β a α ⇒ b − 2 . = π e e ◮ A µ → A ′ µ = A µ + a µ . � 1 � ν ⇔ 1 ◮ ν = 1 / 3 ⇔ ν CF = 1, ν + 2 . Fractional QHE = Integer QHE for composite Fermions, Jain (1990). Brian Dolan 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend