platonic qhe
play

Platonic QHE Chern numbers J. Avron Department of Physics, - PowerPoint PPT Presentation

Platonic QHE Chern numbers J. Avron Department of Physics, Technion ESI, 2014 Hofstadter butterfly: Chern numbers phase diagram Avron (Technion) Platonic QHE ESI 2014 1 / 32 Outline Prelims 1 Physics Math Platonic QHE 2 Virtual work


  1. Platonic QHE Chern numbers J. Avron Department of Physics, Technion ESI, 2014 Hofstadter butterfly: Chern numbers phase diagram Avron (Technion) Platonic QHE ESI 2014 1 / 32

  2. Outline Prelims 1 Physics Math Platonic QHE 2 Virtual work & Hall conductance 3 Chern=Kubo 4 Avron (Technion) Platonic QHE ESI 2014 2 / 32

  3. Prelims Physics Outline Prelims 1 Physics Math Platonic QHE 2 Virtual work & Hall conductance 3 Chern=Kubo 4 Avron (Technion) Platonic QHE ESI 2014 3 / 32

  4. Prelims Physics Aharonov-Bohm flux tubes Quantum flux φ � � winds origin φ A · dx = 0 otherwise � Φ 0 = 2 π = 2 π e ���� fundamental Amoeba Flux through a micro-organism 100 µ Avron (Technion) Platonic QHE ESI 2014 4 / 32

  5. Prelims Physics AB Periodicity Flux tube modifies boundary condition: A θ = φδ ( x ∈ cut ) | ψ � + = e i φ | ψ � − b.c. 2 π periodic in φ : | ψ � + = e i φ | ψ � − AB periodicity H ( φ + 2 π ) = UH ( φ ) U ∗ Avron (Technion) Platonic QHE ESI 2014 5 / 32

  6. Prelims Math Outline Prelims 1 Physics Math Platonic QHE 2 Virtual work & Hall conductance 3 Chern=Kubo 4 Avron (Technion) Platonic QHE ESI 2014 6 / 32

  7. Prelims Math Projections: P Orthogonal projections P 2 = P P = P ∗ , � �� � � �� � projection orthogonal d � � � � � � , P = � ψ j ψ j � ψ i | ψ j � = δ ij 1 P ⊥ = ✶ − P � �� � complementary PP ⊥ = P ⊥ P = 0 Avron (Technion) Platonic QHE ESI 2014 7 / 32

  8. Prelims Math Family of projections Paradigm Berry: Spin in magnetic field B B P ( B ) = ✶ + H (ˆ B ) B = B ˆ , | B | 2 � � H ( B ) = B · σ = 1 B 3 B 1 − iB 2 B 1 + iB 2 − B 3 2 P ( B ) sick at B = 0 ⇔ H ( 0 ) degenerates Avron (Technion) Platonic QHE ESI 2014 8 / 32

  9. Prelims Math Family of projections Parameter=control space φ ∈ parameter space=control space P ( φ ) : ( parameter space ) �→ smooth projections Parameter space Hilbert space P ( φ ) φ moving frame P ⊥ ( φ ) Avron (Technion) Platonic QHE ESI 2014 9 / 32

  10. Prelims Math dP Motion of projections P 2 = P � �� � matrices P dP + dP P = dP Corrolary dP P = ( ✶ − P ) dP = P ⊥ dP P dP P = P P ⊥ dP = 0 � �� � = 0 Kato P dP P = 0 Avron (Technion) Platonic QHE ESI 2014 10 / 32

  11. Prelims Math Kato evolution Unitary evolution in evolving subspaces Kato’s unitary evolution P = U P 0 U ∗ , U = U ( φ ) , P = P ( φ ) � �� � Notion of parallel transport φ Who generates U ? i dU = A U ���� generator φ ′ Avron (Technion) Platonic QHE ESI 2014 11 / 32

  12. Prelims Math Kato’s evolution Commutator equation Generator satisfies commutator equation dP = i [ A , P ] Proof: P 0 = U ∗ P U = ⇒ 0 = ( dU ∗ ) P U + U ∗ dP U + U ∗ P dU 0 = U ( dU ∗ ) P + dP + P ( dU ) U ∗ � �� � � �� � − ( dU ) U ∗ − i A A : Not unique! Ambiguity: commutant ( P ) Avron (Technion) Platonic QHE ESI 2014 12 / 32

  13. Prelims Math Kato’s evolution Generator Commutator equation for A : dP = i [ A , P ] A Generator A = i ( dU ) U ∗ = − i [ dP , P ] � �� � � �� � Definition Generator Verify: � � i [ A , P ] = [ dP , P ] , P = ( dP ) P − 2 P ( dP ) P + P dP = dP � �� � = 0 Avron (Technion) Platonic QHE ESI 2014 13 / 32

  14. Prelims Math Parallel transport Connection Parallel transport: No motion in P | ψ � = P | ψ � 0 = P d | ψ � , � �� � � �� � vector ∈ P no − motion � � d | ψ � = d P | ψ � = ( dP ) | ψ � + Pd | ψ � � �� � = 0 parameter space = ( dP ) P | ψ � = [ dP , P ] | ψ � � �� � i A Covariant derivative: � � D = d − i A , D | ψ � = 0 ⇔ Pd | ψ � = 0 Avron (Technion) Platonic QHE ESI 2014 14 / 32

  15. Prelims Math Parallel transport Berry’s phase | ψ 1 � 1-D projection: P = | ψ � � ψ | Parallel transport: 0 = P d | ψ � = | ψ � � ψ | d ψ � D | ψ � = 0 Parallel transport = ⇒ No local Berry’s phase | ψ 0 � 0 = � ψ | d ψ � − 1 2 d ( � ψ | ψ � ) e i β | ψ 0 � | ψ 0 � � �� � = 1 = � ψ | d ψ � − � d ψ | ψ � 2 = i Im � ψ | d ψ � � �� � Berry ′ s phase Avron (Technion) Platonic QHE ESI 2014 15 / 32

  16. Prelims Math Curvature Failure of parallel transport Parallel transport is path dependent: | ψ 1 � � = | ψ 1 � Curvature | ψ 0 � Curvature=Failure of parallel transport � � Ω jk = i [ D j , D k ] = ∂ j A k − ∂ k A j − i [ A j , A k ] � �� � � �� � definition Non − abelian magnetic fields Avron (Technion) Platonic QHE ESI 2014 16 / 32

  17. Prelims Math Curvature for projections P ( dP )( dP ) P Curvature= iP ( dp )( dP ) P Ω jk = i [ D j , D k ] = i [ ∂ j P , ∂ k P ] � �� � definition Proof: � � D j , D k P = [ Pd j , Pd k ] P = P ( ∂ j P )( ∂ k P ) − P ( ∂ k P )( ∂ j P ) = P [ ∂ j P , ∂ k P ] Avron (Technion) Platonic QHE ESI 2014 17 / 32

  18. Prelims Math Curvature 1-D projection 1-D: P = | ψ � � ψ | Berry ′ s curvature � �� � � � Ω jk P = i [ ∂ j P , ∂ k P ] P = i � ∂ j ψ | ∂ k ψ � − � ∂ k ψ | ∂ j ψ � P Example: Spin 1/2 P = ✶ + ˆ H H = Φ · σ, 2 Φ ℓ d Φ j d Φ k Ω jk P = ε jk ℓ P 4 | Φ | 3 � �� � 1 / 2 spherical angle Avron (Technion) Platonic QHE ESI 2014 18 / 32

  19. Prelims Math Gauss Bonnet Geometry meets topology Gauss-Bonnet: Gaussian curvature & genus � 1 Ω dS = 2 ( 1 − genus ) 2 π ���� Curvature Avron (Technion) Platonic QHE ESI 2014 19 / 32

  20. Prelims Math Chern numbers Proof for torus (TKNN) P ( φ 1 , φ 2 ) periodic e i γ | ψ � e i β | ψ � | ψ ( φ 1 , φ 2 ) � periodic up to phase: | ψ ( 0 , 0 ) � = e − i α | ψ ( 2 π, 0 ) � φ 2 = e − i γ | ψ ( 0 , 2 π ) � = e − i β | ψ ( 2 π, 2 π ) � e i α | ψ � | ψ � φ 1 Angle counted mod 2 π ( α − 0 ) mod 2 π + ( β − α ) mod 2 π + ( γ − β ) mod 2 π + ( 0 − γ ) mod 2 π = 0 Chern numbers � � � d ψ | d ψ � = i � ψ | d ψ � ∈ 2 π Z i T ∂ T Avron (Technion) Platonic QHE ESI 2014 20 / 32

  21. Prelims Math Chern numbers Projections Chern numbers � i Chern ( P , M ) = Tr P [ ∂ j P , ∂ k P ] d Φ j d Φ k ∈ Z , 2 π M M : 2-D compact manifold (no bdry= ∂ M = 0) Chern ( P , M ) invariant under smooth deformations of P P singular at eigenvalue crossing–dim P jumps Avron (Technion) Platonic QHE ESI 2014 21 / 32

  22. Prelims Math Chern numbers Facts Chern ( 0 , M ) = Chern ( ✶ , M ) = 0 Chern ( P 1 ⊕ P 2 , M ) = Chern ( P 1 , M ) + Chern ( P 2 , M ) Avron (Technion) Platonic QHE ESI 2014 22 / 32

  23. Prelims Math Chern numbers From sphere to ball H = B · σ, B = ( B x , B y , B z ) Φ � �� � 3 − D space Linear map of parameter space: B = g Φ , Φ = (Φ x , Φ y , Φ z ) det g � = 0 Chern B 3 P (Φ) = ✶ + ˆ H � g jk Φ k σ j , H (Φ) = 2 j , k = 1 Chern ( P ) = sgn det g Avron (Technion) Platonic QHE ESI 2014 23 / 32

  24. Prelims Math Chern numbers What is counted? Contracting into the solid torus − + − + Simon � Chern ( P , T ) = sgn det g (Φ d ) � �� � degeneracies Avron (Technion) Platonic QHE ESI 2014 24 / 32

  25. Prelims Math QHE Driving and response φ 1 emf loop Hall bar φ 2 Hall current loop Platonic Driving: emf = ˙ φ 1 Response: Hall current = ∂ H ∂φ 2 H ( φ 1 , φ 2 ) : Periodic, nondegenerate, hermitian matrix Avron (Technion) Platonic QHE ESI 2014 25 / 32

  26. Prelims Math Variations on a theme Bloch momenta & controls φ 1 φ 2 Periodic Multiply connected ( k 1 , k 2 ) conserved ( φ 1 , φ 2 ) controls Bloch momenta Fluxes Brillouin Zone Aharnonov-Bohm period ∞ noninteracting (gapped) Interacting (finite) fermions Avron (Technion) Platonic QHE ESI 2014 26 / 32

  27. Prelims Math Example: 3 × 3 matrix function Hofstadter Butterfly with flux 1 / 3 H ( φ ) = e i φ 1 + e i φ 2 T S + h . c . ���� ���� translation shift     0 1 0 1 0 0 1/3 T = 0 0 1 S = 0 0 , ω     1 0 0 0 0 ω ¯ � �� � � �� � lattice translation S = FTF ∗ Hofstadter Model B = 1 / 3 ω = e 2 π i / 3 Avron (Technion) Platonic QHE ESI 2014 27 / 32

  28. Virtual work & Hall conductance Virtual work Q-observable H : ( parameter space φ ) �→ Hamiltonian Virtual work δ H = dH ( φ ) δφ d φ � �� � φ observable Loop current: Virtual work of Aharonov-Bohm flux I = dH d φ Avron (Technion) Platonic QHE ESI 2014 28 / 32

  29. Virtual work & Hall conductance Charge transport Time dependent Feynman-Hellman Virtual work=Rate of Berry’s phase � � � ψ | ∂ φ H | ψ � = ∂ t i � ψ | ∂ φ ψ � � �� � � �� � Virtual work Berry ′ s phase Schrödinger i ∂ t | ψ � = H ( φ ) | ψ � Pf: time − independent = 0 � �� � � ψ | ∂ φ H | ψ � = ∂ φ � ψ | H | ψ � − � ∂ φ ψ | H | ψ � − � ψ | H | ∂ φ ψ � � �� � � �� � i | ∂ t ψ � − i � ∂ t ψ | � � = ∂ t i � ψ | ∂ φ ψ � Avron (Technion) Platonic QHE ESI 2014 29 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend