vertex quasiprimitivity in regular maps
play

Vertex-quasiprimitivity in regular maps Jozef Sir a n OU and - PowerPoint PPT Presentation

Vertex-quasiprimitivity in regular maps Jozef Sir a n OU and STU 27th May 2015 Jozef Sir a n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 1 / 15 The five Platonic maps M Jozef Sir a n OU


  1. Is this embedding of K 5 in a torus orientably-regular? �� �� � � �������� �������� �������� �������� ���� ���� �� �� � � ���� ���� �������� �������� �������� �������� � � �������� �������� �������� �������� ���� ���� � � �������� �������� �������� �������� ���� ���� � � ���� ���� �������� �������� �������� �������� �� �� �������� �������� �������� �������� �� �� ���� ���� � � � �� �� �� �� � �������� �������� �������� �������� �� �� �� �� ���� ���� � � ���� ���� �������� �������� �������� �������� ����������������� ����������������� ���� ���� �������� �������� ����������������� ����������������� � � �������� �������� ���� ���� ����������������� ����������������� � � ���� ���� �������� �������� ����������������� ����������������� � � ���� ���� �������� �������� �� �� ����������������� ����������������� �������� �������� �� �� � � ���� ���� ����������������� ����������������� � � ���� ���� �������� �������� ����������������� ����������������� ���� ���� �������� �������� � � ����������������� ����������������� �������� �������� ���� ���� � � ����� ����� ����������������� ����������������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � � � ����������������� ����������������� ����� ����� �������� �������� � � �� �� � � ����� ����� ����������������� ����������������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� ����� ����� � � ����������������� ����������������� �������� �������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� �������� �������� � � ����� ����� �������� �������� �������� �������� ����� ����� �������� �������� �� �� �� �� �������� �������� ����� ����� �������� �������� �� �� �� �� Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 3 / 15

  2. Is this embedding of K 5 in a torus orientably-regular? �� �� � � �������� �������� �������� �������� ���� ���� �� �� � � ���� ���� �������� �������� �������� �������� � � �������� �������� �������� �������� ���� ���� � � �������� �������� �������� �������� ���� ���� � � ���� ���� �������� �������� �������� �������� �� �� �������� �������� �������� �������� �� �� ���� ���� � � � �� �� �� �� � �������� �������� �������� �������� �� �� �� �� ���� ���� � � ���� ���� �������� �������� �������� �������� ����������������� ����������������� ���� ���� �������� �������� ����������������� ����������������� � � �������� �������� ���� ���� ����������������� ����������������� � � ���� ���� �������� �������� ����������������� ����������������� � � ���� ���� �������� �������� �� �� ����������������� ����������������� �������� �������� �� �� � � ���� ���� ����������������� ����������������� � � ���� ���� �������� �������� ����������������� ����������������� ���� ���� �������� �������� � � ����������������� ����������������� �������� �������� ���� ���� � � ����� ����� ����������������� ����������������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � � � ����������������� ����������������� ����� ����� �������� �������� � � �� �� � � ����� ����� ����������������� ����������������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� ����� ����� � � ����������������� ����������������� �������� �������� �������� �������� � � ����������������� ����������������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� �������� �������� ����� ����� �������� �������� � � �������� �������� ����� ����� �������� �������� �������� �������� � � ����� ����� �������� �������� �������� �������� ����� ����� �������� �������� �� �� �� �� �������� �������� ����� ����� �������� �������� �� �� �� �� • Presentation: Aut + ( M ) = � r , s ; r 4 = s 4 = ( rs ) 2 = ... = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 3 / 15

  3. � � �� �� �� �� � � � � �� �� �� �� � � � � � � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� � � � � � � �� �� � � �� �� � � � � � � �� �� � � � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � � � �� �� �� �� � � � � �� �� �� �� � � Is this embedding of K 5 regular? Chirality Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 4 / 15

  4. Is this embedding of K 5 regular? Chirality � � �� �� �� �� � � � � �� �� �� �� � � � � � � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� � � � � � � �� �� � � �� �� � � � � � � �� �� � � � � �� �� � � � � �� �� �� �� � � �� �� � � �� �� � � �� �� � � � � �� �� �� �� � � � � �� �� �� �� � � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 4 / 15

  5. Regular and orientably-regular maps Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  6. Regular and orientably-regular maps A map is regular if its automorphism group is regular on flags. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  7. Regular and orientably-regular maps A map is regular if its automorphism group is regular on flags. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  8. Regular and orientably-regular maps A map is regular if its automorphism group is regular on flags. Aut ( M ) = � x , y , z | x 2 = y 2 = z 2 = ( yz ) k = ( zx ) m = ( xy ) 2 = . . . = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  9. Regular and orientably-regular maps A map is regular if its automorphism group is regular on flags. Aut ( M ) = � x , y , z | x 2 = y 2 = z 2 = ( yz ) k = ( zx ) m = ( xy ) 2 = . . . = 1 � Orientable regularity - the orientation-preserving map automorphism group Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � is regular on arcs, or darts: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  10. Regular and orientably-regular maps A map is regular if its automorphism group is regular on flags. Aut ( M ) = � x , y , z | x 2 = y 2 = z 2 = ( yz ) k = ( zx ) m = ( xy ) 2 = . . . = 1 � Orientable regularity - the orientation-preserving map automorphism group Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � is regular on arcs, or darts: Conversely, such group presentations determine (orientably-) regular maps. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 5 / 15

  11. The famous Klein map of genus 3 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 6 / 15

  12. The famous Klein map of genus 3 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 6 / 15

  13. The Klein map of genus 3 – algebraically Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 7 / 15

  14. The Klein map of genus 3 – algebraically • Regular, of type { 7 , 3 } Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 7 / 15

  15. The Klein map of genus 3 – algebraically • Regular, of type { 7 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 7 = ( xy ) 2 = . . . = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 7 / 15

  16. The Klein map of genus 3 – algebraically • Regular, of type { 7 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 7 = ( xy ) 2 = . . . = 1 � • 336 flags Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 7 / 15

  17. The Klein map of genus 3 – algebraically • Regular, of type { 7 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 7 = ( xy ) 2 = . . . = 1 � • 336 flags • Aut ( M ) ≃ PGL (2 , 7) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 7 / 15

  18. Example of a non-orientable regular map Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  19. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  20. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  21. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : • Regular, of type { 5 , 3 } Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  22. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : • Regular, of type { 5 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 5 = ( xy ) 2 = . . . = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  23. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : • Regular, of type { 5 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 5 = ( xy ) 2 = . . . = 1 � • 60 flags Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  24. Example of a non-orientable regular map The Petersen Graph on the projective plane, with its dual – K 6 : • Regular, of type { 5 , 3 } • Aut ( M ) = � x , y , z ; x 2 = y 2 = z 2 = ( yz ) 3 = ( zx ) 5 = ( xy ) 2 = . . . = 1 � • 60 flags • Aut ( M ) ≃ A 5 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 8 / 15

  25. Classification by automorphism groups Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  26. Classification by automorphism groups Available results: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  27. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  28. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  29. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  30. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  31. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 • Nilpotent maps - class 3 Du, Nedela, ˇ Skoviera et al 201? Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  32. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 • Nilpotent maps - class 3 Du, Nedela, ˇ Skoviera et al 201? cnik, ˇ • Maps on PSL , PGL (2 , q ) - Sah 1969, Conder, Potoˇ S 2010 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  33. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 • Nilpotent maps - class 3 Du, Nedela, ˇ Skoviera et al 201? cnik, ˇ • Maps on PSL , PGL (2 , q ) - Sah 1969, Conder, Potoˇ S 2010 • Maps of type { 4 , 5 } on Suzuki groups - Jones, Silver 1993 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  34. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 • Nilpotent maps - class 3 Du, Nedela, ˇ Skoviera et al 201? cnik, ˇ • Maps on PSL , PGL (2 , q ) - Sah 1969, Conder, Potoˇ S 2010 • Maps of type { 4 , 5 } on Suzuki groups - Jones, Silver 1993 • Maps of type { 3 , p } , p ≡ − 1 mod 12, on Ree groups - Jones 1994 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  35. Classification by automorphism groups Available results: • Abelian, dihedral: Folklore • Sylow-cyclic: Classification of groups - H¨ older 1895, Burnside 1905, cnik, ˇ Zassenhaus 1936; maps - Conder, Potoˇ S 2010 • Almost Sylow-cyclic: Solvable groups - Zassenhaus 1936; unsolvable - cnik, ˇ Suzuki 1955, Wong 1966; maps - Conder, Potoˇ S 2010 c, Nedela, ˇ • Nilpotent maps - class 2 Malniˇ Skoviera 2012 • Nilpotent maps - class 3 Du, Nedela, ˇ Skoviera et al 201? cnik, ˇ • Maps on PSL , PGL (2 , q ) - Sah 1969, Conder, Potoˇ S 2010 • Maps of type { 4 , 5 } on Suzuki groups - Jones, Silver 1993 • Maps of type { 3 , p } , p ≡ − 1 mod 12, on Ree groups - Jones 1994 Classification also considered by underlying graphs and supporting surfaces. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 9 / 15

  36. Large regular maps from small ones by lifting Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  37. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  38. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  39. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  40. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  41. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Knowing M ′ = M / K and K , we may reverse the process and lift M ′ to M along K ; the lift may not be unique. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  42. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Knowing M ′ = M / K and K , we may reverse the process and lift M ′ to M along K ; the lift may not be unique. Theory of covers and lifts: A. Malniˇ c; Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  43. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Knowing M ′ = M / K and K , we may reverse the process and lift M ′ to M along K ; the lift may not be unique. Theory of covers and lifts: A. Malniˇ c; elementary Abelian case well understood: Malniˇ c, Maruˇ siˇ c, Potoˇ cnik 2004. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  44. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Knowing M ′ = M / K and K , we may reverse the process and lift M ′ to M along K ; the lift may not be unique. Theory of covers and lifts: A. Malniˇ c; elementary Abelian case well understood: Malniˇ c, Maruˇ siˇ c, Potoˇ cnik 2004. Regular cyclic lifts of Platonic maps: Jones and Surowski 2000, generalised by Hu, Nedela and Wang 2014. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  45. Large regular maps from small ones by lifting M : orientably-regular, G = Aut + ( M ) = � r , s | r k = s m = ( rs ) 2 = . . . = 1 � Taking K ⊳ G we may form the orientably-regular quotient map M / K with G / K = Aut + ( M / K ) = � rK , sK | ( rK ) κ = ( sK ) µ = ( rsK ) 2 = . . . = 1 � The projection G → G / K induces a branched covering M → M / K of maps (and supporting surfaces); smooth iff κ = k and µ = m . Knowing M ′ = M / K and K , we may reverse the process and lift M ′ to M along K ; the lift may not be unique. Theory of covers and lifts: A. Malniˇ c; elementary Abelian case well understood: Malniˇ c, Maruˇ siˇ c, Potoˇ cnik 2004. Regular cyclic lifts of Platonic maps: Jones and Surowski 2000, generalised by Hu, Nedela and Wang 2014. Examples of lifts of embeddings of the θ -graph: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 10 / 15

  46. Quasiprimitivity Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  47. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  48. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  49. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  50. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  51. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  52. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. If there is a K ⊳ G such that M / K has at least two vertices, try lifts. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  53. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. If there is a K ⊳ G such that M / K has at least two vertices, try lifts. But what if there is no such K ⊳ G ? Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  54. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. If there is a K ⊳ G such that M / K has at least two vertices, try lifts. But what if there is no such K ⊳ G ? Equivalently, what if every normal subgroup of our permutation group G is transitive on Ω ? Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  55. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. If there is a K ⊳ G such that M / K has at least two vertices, try lifts. But what if there is no such K ⊳ G ? Equivalently, what if every normal subgroup of our permutation group G is transitive on Ω ? Such permutation groups are known as quasiprimitive. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  56. Quasiprimitivity Take an orientably-regular map M ; view G = Aut + ( M ) as a permutation group on the set Ω of vertices of M . This works fine if G has trivial core on Ω, where, for G transitive on Ω (which is our case), core ( G ) = { h ∈ G ; h ( v ) = v for each v ∈ Ω } ( g ∈ G ) g − 1 Hg ; H = Stab G ( u ) for some u ∈ Ω. = � This is always the case when the underlying graph of M is simple. From now on: G = Aut + ( M ) acts faithfully as a permutation group on Ω. If there is a K ⊳ G such that M / K has at least two vertices, try lifts. But what if there is no such K ⊳ G ? Equivalently, what if every normal subgroup of our permutation group G is transitive on Ω ? Such permutation groups are known as quasiprimitive. The corresponding orientably-regular and regular maps may be thought of as ‘irreducible’. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 11 / 15

  57. The O’Nan-Scott-Praeger Theorem (1979,1993) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  58. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  59. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  60. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  61. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  62. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  63. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω • SD : Ω = N / H , H < dia N , N ⊳ G < N . Out ( T ) × S k < S Ω , k ≥ 2 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  64. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω • SD : Ω = N / H , H < dia N , N ⊳ G < N . Out ( T ) × S k < S Ω , k ≥ 2 • CD : Ω = N , G < H wr S k , H quasiprimitive on T of SD-type, k ≥ 4 Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  65. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω • SD : Ω = N / H , H < dia N , N ⊳ G < N . Out ( T ) × S k < S Ω , k ≥ 2 • CD : Ω = N , G < H wr S k , H quasiprimitive on T of SD-type, k ≥ 4 • TW : Ω = N , T non-Abelian, G is a ‘twisted wreath product’ Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  66. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω • SD : Ω = N / H , H < dia N , N ⊳ G < N . Out ( T ) × S k < S Ω , k ≥ 2 • CD : Ω = N , G < H wr S k , H quasiprimitive on T of SD-type, k ≥ 4 • TW : Ω = N , T non-Abelian, G is a ‘twisted wreath product’ • PA : Ω = N ⊳ G < H wr S k , T < H < Aut ( T ), ‘product action’ of G on Ω. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  67. The O’Nan-Scott-Praeger Theorem (1979,1993) Quasiprimitive permutation groups G on Ω (with all normal subgroups transitive) have N = soc ( G ) = T k for some simple group T , and: • HA : Ω = Z k p , G < AGL ( k , p ), Stab G ( u ) irreducible, N = Z k p • HS : Ω = T , k = 2, N = T . Inn ( T ) < G < T . Aut ( T ) • HC : Ω = T ℓ , k = 2 ℓ > 2, N = T ℓ . Inn ( T ℓ ) < G < T ℓ . Aut ( T ℓ ) • AS : k = 1, N = T < G < Aut ( T ), T transitive on some set Ω • SD : Ω = N / H , H < dia N , N ⊳ G < N . Out ( T ) × S k < S Ω , k ≥ 2 • CD : Ω = N , G < H wr S k , H quasiprimitive on T of SD-type, k ≥ 4 • TW : Ω = N , T non-Abelian, G is a ‘twisted wreath product’ • PA : Ω = N ⊳ G < H wr S k , T < H < Aut ( T ), ‘product action’ of G on Ω. Lemma [Li, ˇ S, Wang] If G is the automorphism group of a regular or an orientably-regular map, quasiprimitive on V , then G is HA, AS, TW or PA. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 12 / 15

  68. The ‘Holomorph-Abelian’ case: A sample result Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  69. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  70. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  71. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  72. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) such that h k / 2 inverts N. Let 1 � = g ∈ N and let S = { g h i ; i ∈ Z k } , with natural cyclic ordering. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  73. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) such that h k / 2 inverts N. Let 1 � = g ∈ N and let S = { g h i ; i ∈ Z k } , with natural cyclic ordering. Then, the Cayley graph Cay ( N , S ) embeds as an orientably-regular Cayley map; Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  74. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) such that h k / 2 inverts N. Let 1 � = g ∈ N and let S = { g h i ; i ∈ Z k } , with natural cyclic ordering. Then, the Cayley graph Cay ( N , S ) embeds as an orientably-regular Cayley map; the map is regular if and only if d = 2 e and k divides p e + 1 . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  75. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) such that h k / 2 inverts N. Let 1 � = g ∈ N and let S = { g h i ; i ∈ Z k } , with natural cyclic ordering. Then, the Cayley graph Cay ( N , S ) embeds as an orientably-regular Cayley map; the map is regular if and only if d = 2 e and k divides p e + 1 . Moreover, all (orientably) regular maps with a vertex-quasiprimitive automorphism group of type HA for odd p arise this way. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  76. The ‘Holomorph-Abelian’ case: A sample result This is the only case in which we have a characterisation: Theorem [Li, ˇ S, Wang, w. i. p.] Let N = Z d p for an odd prime p and let G = N ⋊ H, where H = � h � ≃ Z k is an irreducible subgroup of AGL ( d , p ) (that is, k is an even primitive divisor of p d − 1 ) such that h k / 2 inverts N. Let 1 � = g ∈ N and let S = { g h i ; i ∈ Z k } , with natural cyclic ordering. Then, the Cayley graph Cay ( N , S ) embeds as an orientably-regular Cayley map; the map is regular if and only if d = 2 e and k divides p e + 1 . Moreover, all (orientably) regular maps with a vertex-quasiprimitive automorphism group of type HA for odd p arise this way. Similar results for non-orientable regular maps; modifications for p = 2. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 13 / 15

  77. The ‘Twisted Wreath Product’ case Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  78. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  79. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  80. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  81. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  82. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  83. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . The twisted wreath product of T and B is T twr ϕ B := A ⋊ ψ B ; Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  84. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . The twisted wreath product of T and B is T twr ϕ B := A ⋊ ψ B ; it has a transitive action on Ω= A given by f ( g , b ) = gf b for f , g ∈ A and b ∈ B . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  85. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . The twisted wreath product of T and B is T twr ϕ B := A ⋊ ψ B ; it has a transitive action on Ω= A given by f ( g , b ) = gf b for f , g ∈ A and b ∈ B . A sample of results: Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  86. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . The twisted wreath product of T and B is T twr ϕ B := A ⋊ ψ B ; it has a transitive action on Ω= A given by f ( g , b ) = gf b for f , g ∈ A and b ∈ B . A sample of results: • Every quasiprimitive regular map of type TW is orientable. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  87. The ‘Twisted Wreath Product’ case Let a group B have a transitive action on { 1 , . . . , k } , with S = Stab B (1). Let ϕ : S �→ Aut ( T ) be such that core B ( ϕ − 1 ( Inn ( T )) = { 1 B } . Define A := { f : B �→ T : f ( bs ) = f ( b ) ϕ ( s ) for all b ∈ B , s ∈ S } . Then A is a group under pointwise multiplication and A ∼ = T k . Further, let B act on A by ψ : f b ( x ) := f ( bx ) for all b , x ∈ B . The twisted wreath product of T and B is T twr ϕ B := A ⋊ ψ B ; it has a transitive action on Ω= A given by f ( g , b ) = gf b for f , g ∈ A and b ∈ B . A sample of results: • Every quasiprimitive regular map of type TW is orientable. • Infinite families of orientably-regular (chiral, if desired) map M with Aut + ( M ) ∼ = T twr ϕ B , where T = PSL (2 , p ), B = Z 2 k , ϕ ( z ) = z mod k . Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 14 / 15

  88. The ‘Product Action’ and ‘Almost Simple’ cases Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  89. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  90. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. We have infinite families of examples of (orientably-) regular maps in the first two categories (for chiral examples we need to invoke the family of Suzuki simple groups), and a proof that no example exists in the third category. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  91. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. We have infinite families of examples of (orientably-) regular maps in the first two categories (for chiral examples we need to invoke the family of Suzuki simple groups), and a proof that no example exists in the third category. • The ‘Almost Simple’ type: k =1, N = T < G < Aut ( T ), T transitive on Ω Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  92. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. We have infinite families of examples of (orientably-) regular maps in the first two categories (for chiral examples we need to invoke the family of Suzuki simple groups), and a proof that no example exists in the third category. • The ‘Almost Simple’ type: k =1, N = T < G < Aut ( T ), T transitive on Ω A consequence of a deep result of Malle, Saxl, and Weigel 1991: Every finite simple group is isomorphic to the automorphism group of an orientably regular map. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  93. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. We have infinite families of examples of (orientably-) regular maps in the first two categories (for chiral examples we need to invoke the family of Suzuki simple groups), and a proof that no example exists in the third category. • The ‘Almost Simple’ type: k =1, N = T < G < Aut ( T ), T transitive on Ω A consequence of a deep result of Malle, Saxl, and Weigel 1991: Every finite simple group is isomorphic to the automorphism group of an orientably regular map. With some exceptions, the map can be assumed to be trivalent; Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

  94. The ‘Product Action’ and ‘Almost Simple’ cases • The ‘Product Action’ type (description omitted) splits into the ‘Straight Diagonal’, ‘Twisted Diagonal’ and ‘Non-Diagonal’ subcases. We have infinite families of examples of (orientably-) regular maps in the first two categories (for chiral examples we need to invoke the family of Suzuki simple groups), and a proof that no example exists in the third category. • The ‘Almost Simple’ type: k =1, N = T < G < Aut ( T ), T transitive on Ω A consequence of a deep result of Malle, Saxl, and Weigel 1991: Every finite simple group is isomorphic to the automorphism group of an orientably regular map. With some exceptions, the map can be assumed to be trivalent; with a larger set of exceptions the result extends to regular maps. Jozef ˇ Sir´ aˇ n OU and STU Vertex-quasiprimitivity in regular maps 27th May 2015 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend