towards a scale free electroweak baryogenesis
play

Towards a scale free electroweak baryogenesis Teppei Kitahara U.of - PowerPoint PPT Presentation

Towards a scale free electroweak baryogenesis Teppei Kitahara U.of Tokyo KEK Karlsruhe Collaborators K. Ishikawa, M. Takimoto Based on PRD . 91(2015) 055004, PRL .113(2014) 131801 U.of Toyama theory seminar May 22, 2015,


  1. Towards a scale free electroweak baryogenesis Teppei Kitahara ( U.of Tokyo → KEK → Karlsruhe ) Collaborators : K. Ishikawa, M. Takimoto Based on PRD . 91(2015) 055004, PRL .113(2014) 131801 U.of Toyama theory seminar May 22, 2015, University of Toyama

  2. Standard Model (SM) July 2012, Observation of a Higgs boson particle indiatimes.com Nobel prize, 2013 [CMS-HIG-14-009] [ATLAS-CONF-2015-007] 2 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  3. [ レオ・レオニ フェイスタオル スイミー ] 3 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  4. Anti - MATTER current the Universe MATTER [ レオ・レオニ フェイスタオル スイミー ] 3 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  5. Anti - MATTER current the Universe MATTER [ レオ・レオニ フェイスタオル スイミー ] [ Planck ’14 ] /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  6. Anti - MATTER current the Universe MATTER n B − n ¯ B ∼ 10 − 10 s [ レオ・レオニ フェイスタオル スイミー ] [ Planck ’14 ] /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  7. Observed BAU B aryon A symmetry of the U niverse ( BAU ) Y B ≡ n B − n ¯ B = (0 . 86 ± 0 . 01) × 10 − 10 [ WMAP ’12 , Planck ’14 ] s s = π 2 where B + s × 10 − 10 45 g ∗ T 3 : entropy density n B ∼ n ¯ : massless degrees of freedom ~ O(10 -100) g ∗ n B ∝ a ( t ) − 3 ∝ T 3 Y B is constant during the expansion of the Universe A suitable Big Bang Nucleosynthesis ( BBN ) requires 0 . 4 × 10 − 10 . Y B . 0 . 9 × 10 − 10 [ Copi, et.al. ’95 ] Observed value by Planck/WMAP is consistent with BBN 4 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  8. Observed BAU B aryon A symmetry of the U niverse ( BAU ) Y B ≡ n B − n ¯ B = (0 . 86 ± 0 . 01) × 10 − 10 [ WMAP ’12 , Planck ’14 ] s s = π 2 where B + s × 10 − 10 45 g ∗ T 3 : entropy density n B ∼ n ¯ : massless degrees of freedom ~ O(10 -100) g ∗ n B ∝ a ( t ) − 3 ∝ T 3 Y B is constant during the expansion of the Universe A suitable Big Bang Nucleosynthesis ( BBN ) requires 0 . 4 × 10 − 10 . Y B . 0 . 9 × 10 − 10 Observed value by Planck/WMAP is consistent with with BBN [ Copi, et.al. ’95 ] 4 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  9. Sakharov’s 3 conditions [ Sakharov, ’67 ] The following 3 necessary conditions are required for the Baryogenesis i ) Baryon number violating process ii ) Violation of C and CP symmetries iii ) Out of thermal equilibrium 5 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  10. Sakharov’s 3 conditions [ Sakharov, ’67 ] The following 3 necessary conditions are required for the Baryogenesis i ) Baryon number violating process ii ) Violation of C and CP symmetries iii ) Out of thermal equilibrium SM is satisfied the conditions ( i ) and ( ii ) ( i ) Anomalous process ( sphaleron ) , Next Slide ( ii ) SM dose not have C symmetry, SM has CKM matrix 5 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  11. Sphaleron transitions Anomaly calculations of Baryon number and Lepton number axial current ✓ ◆ ✓ ◆ u L ν ¯ ¯ d R ¯ u R e R d L e L b d a c e B + L 1 / 3 − 1 / 3 − 1 / 3 − 1 1 1 / 3 − 1 / 3 − 1 / 3 − 1 B − L 1 ⇢ 0 ( B + L ) Gauge ∝ 2 a + b + c = SU (3) c 0 ( B − L ) B+L/B - L axial current ⇢ 2 6 = 0 ( B + L ) SU (2) L / 3 a + d = 0 ( B � L ) Gauge ◆ 2 ◆ 2 ✓ 1 ✓ � 2 ✓ 1 ◆ / 6 a + 3 3 U (1) Y 6 3 3 ⇢ � 1 6 = 0 ( B + L ) ✓ � 1 ◆ d + (1) 2 e = + 2 0 ( B � L ) 2 6 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  12. Sphaleron transitions Anomaly calculations of Baryon number and Lepton number axial current ✓ ◆ ✓ ◆ u L ν ¯ ¯ d R ¯ u R e R d L e L b d a c e B + L 1 / 3 − 1 / 3 − 1 / 3 − 1 1 1 / 3 − 1 / 3 − 1 / 3 − 1 B − L 1 ⇢ 0 ( B + L ) Gauge ∝ 2 a + b + c = SU (3) c 0 ( B − L ) B+L/B - L B - L axial current is axial current anomaly free in ⇢ 2 6 = 0 ( B + L ) SU (2) L the SM, but B+L / 3 a + d = 0 ( B � L ) axial current is Gauge anomalous ◆ 2 ◆ 2 ✓ 1 ✓ � 2 ✓ 1 ◆ / 6 a + 3 3 U (1) Y 6 3 3 ⇢ � 1 6 = 0 ( B + L ) ✓ � 1 ◆ d + (1) 2 e = + 2 0 ( B � L ) 2 6 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  13. Sphaleron transitions B+L chiral anomaly 3 ⇣ ⌘ g 2 Tr( F µ ν ˜ F µ ν ) − g 0 2 B µ ν ˜ ∂ µ j µ, 5 B + L = B µ ν 16 π 2 F µ ν ≡ 1 where 2 ✏ µ νρσ F ρσ SU ( 2 ) gauge field has a topologically non - trivial field configuration in 3 ( 4 ) dimensional Euclidean space sphaleron ( instanton ) solution thermal tunneling V ( sphaleron ) ∝ B+L # Winding # -1 2 0 1 vacuum tunneling [ ’t Hooft ’76 ] ( instanton ) 7 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  14. Sphaleron transition rate Sphaleron process is a non - perturbative 9 left handed quarks and 3 left handed lepton vertex ∆ B = 3 ∆ L = 3 [ Illustrated by Morrissey, Ramsey - Musolf ] condition ( i ) ! T C : Electroweak phase transition temperature T > T C ( Symmetric vacuum, massless weak bosons ) Γ sph ∼ α 4 W T At high temperature, the sphaleron process is always active 8 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  15. Sphaleron decoupling condition Once electroweak symmetry is broken, the sphaleron process becomes decouple ( Breaking vacuum, massive weak bosons ) T < T C √ " # − 24 2 π v Γ sph ∼ T Exp ⌧ H ( T ) g T Decouple! ∆ B = 3 − 8 π 2 ✓ ◆ Γ ins ∼ 1 cf. R Exp g 2 ∆ L = 3 Decoupling condition v C > T C ∼ 0 . 9 [Funakubo, Senaha ’09 ] v C & 0 . 9 : Condition of a “ strongly ” 1 st order phase transition T C 9 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  16. Electroweak Baryogenesis [ Kuzmin, Rubakov, Shaposhnikov ’85, Shaposhnikov ’86, ’87 ] Electroweak Baryogenesis ( EWBG ) is one of the baryogenesis scenarios A first order phase transition involved with electroweak symmetry breaking gives the out of thermal equilibrium V Experimentally testable scenario v EW thermal tunneling Bubble expansion thermal tunneling [ ’t Hooft ’76 ] [ Illustrated by Morrissey, Ramsey - Musolf ] [ Morrissey, Ramsey - Musolf ’12 ] 10 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  17. Electroweak Baryogenesis [ Kuzmin, Rubakov, Shaposhnikov ’85, Shaposhnikov ’86, ’87 ] h φ i = 0 Bubble W all h φ i 6 = 0 Symmetric vacuum Breaking vacuum ① Interaction between matter and bubble generate spacial CP ( Baryon ) asymmetric distribution ② Baryon # is fixed because Baryon number sphaleron process is decoupled violation v C Bubble W all & 0 . 9 when T C [ ’t Hooft ’76 ] [ Morrissey, Ramsey - Musolf ’12 ] 11 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  18. Electroweak Baryogenesis Within the standard model, EWBG mechanism can not be realized m h . 70 GeV , CKM phase is insu ffi cient [ Bochkarev, Shaposhnikov ’87, Kajantie, Laine, Rummukainen, Shaposhnikov ’96 ] Within the MSSM, EWBG mechanism is still alive, but severe t R . 110 GeV t L � 50 TeV , m ˜ m ˜ [ Carena, Nardini, Quiros, W agner ’13 ] σ ( gg → h ) が 2.5 倍以上。和らげるには Br ( h → inv. ) > 30 - 60 % → excluded by global fit... Higgs ( scalar ) sector extended models can achieve the electroweak phase transition easily MSSM+singlet, 2HDM, SM + complex singlet, etc... Constraints: EDM, direct search for additional scalar, Higgs coupling, Bphys. etc... These scenario are alive and testable by the future experiments! 12 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  19. Electroweak Baryogenesis Within the standard model, EWBG mechanism can not be realized m h . 70 GeV , CKM phase is insu ffi cient [ Bochkarev, Shaposhnikov ’87, Kajantie, Laine, Rummukainen, Shaposhnikov ’96 ] Within the MSSM, EWBG mechanism is still alive, but severe t R . 110 GeV t L � 50 TeV , m ˜ m ˜ [ Carena, Nardini, Quiros, W agner ’13 ] σ ( gg → h ) が 2.5 倍以上。和らげるには Br ( h → inv. ) > 30 - 60 % → excluded by global fit... Higgs ( scalar ) sector extended models can achieve the electroweak phase transition easily MSSM+singlet, 2HDM, SM + complex singlet, etc... Constraints: EDM, direct search for additional scalar, Higgs coupling, Bphys. etc... These scenario are alive and testable by the future experiments! 12 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend