perturbative ambiguities in compactified spacetime and
play

Perturbative ambiguities in compactified spacetime and resurgence - PowerPoint PPT Presentation

Perturbative ambiguities in compactified spacetime and resurgence structure Okuto Morikawa ( ) Kyushu University 2020/9/24 Resurgence 2020 in YITP K. Ishikawa, O.M., K. Shibata and H. Suzuki, PTEP 2020 (2020) 063B02


  1. Perturbative ambiguities in compactified spacetime and resurgence structure Okuto Morikawa ( 森 川 億 人 ) Kyushu University 2020/9/24 Resurgence 2020 in YITP K. Ishikawa, O.M., K. Shibata and H. Suzuki, PTEP 2020 (2020) 063B02 [arXiv:2001.07302 [hep-th]] O.M. and H. Takaura, PLB 807 (2020) 135570 [arXiv:2003.04759 [hep-th]] M. Ashie, O.M., H. Suzuki and H. Takaura, PTEP 2020 (2020) 093B02 [arXiv:2005.07407 [hep-th]] Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 1 / 27

  2. Contents Introduction 1 Factorial growth in QFT Resurgence structure in R d − 1 × S 1 PFD-type ambiguity on circle compactification 2 Enhancement mechanism and bion Vacuum energy of SUSY C P N model Renormalon on circle compactification 3 ∄ Renormalon ambiguities Subtlety of large N limit on circle compactification “Renormalon precursor” and decompactification Summary 4 Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 2 / 27

  3. Contents Introduction 1 Factorial growth in QFT Resurgence structure in R d − 1 × S 1 PFD-type ambiguity on circle compactification 2 Enhancement mechanism and bion Vacuum energy of SUSY C P N model Renormalon on circle compactification 3 ∄ Renormalon ambiguities Subtlety of large N limit on circle compactification “Renormalon precursor” and decompactification Summary 4 Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 3 / 27

  4. Factorial growth in QFT Two sources of factorial growth of perturbative coefficients: Proliferation of Feynman diagrams (PFD) 1 Ground state energy in QM ∼ ( − 1) k (2 k )! Zeeman effect ∼ (2 k )! Stark effect V ( φ ) ∼ φ 3 ∼ Γ( k + 1 / 2) V ( φ ) ∼ φ 4 ∼ ( − 1) k Γ( k + 1 / 2) ∼ k ! Double well ∼ k ! Periodic cosine Renormalon [’t Hooft ’79] 2 ∼ β k 0 k ! k p ( β 0 : one-loop coefficient of the beta function) Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 4 / 27

  5. Resurgence theory and renormalon problem Perturbative ambiguities (Borel resummation) � � g 2 / 16 π 2 � k � − 16 π 2 / g 2 � PFD : k ! ⇒ δ ∼ exp k � � g 2 / 16 π 2 � k � � β k − 16 π 2 / ( β 0 g 2 ) ⇒ δ ∼ exp Renormalon : 0 k ! k Resurgence structure [Bogomolny ’80, Zinn-Justin ’81] � − 16 π 2 / g 2 � δ PFD ∼ exp = exp ( − 2 S I ) � Cancellation (Instanton action S I = 8 π 2 / g 2 ) δ Instanton ∼ exp ( − 2 S I ) But, what cancels the renormalon ambiguity δ Renormalon ? ◮ Non-trivial configuration with S = S I /β 0 ( δ NP ∼ e − 2 S I /β 0 )? ◮ Not known (cf. cancellation between terms of OPE [David ’82]) ◮ Higher-order perturbation theory? Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 5 / 27

  6. Renormalon cancellation in R d − 1 × S 1 ? A possible candidate [Argyres–¨ Unsal ’12, Dunne–¨ Unsal ’12, . . . ]: Bion [¨ Unsal ’07] = fractional instanton/anti-instanton pair on R d − 1 × S 1 with Z N -twisted boundary conditions (BC) � A / N for A � = N ϕ A ( x , x d + 2 π R ) = e 2 π im A R ϕ A ( x , x d ) , m A R = 0 for A = N � �� � N -component field S B = S I / N ← similar N dependence! ( β 0 = 11 3 N for SU ( N ) GT) Resurgence on S 1 compactified spacetime? PT Semi-classical object δ Renormalon ∼ e − 16 π 2 / ( β 0 g 2 ) ❩ ✚ R 4 ? ✚ ❩ R 3 × S 1 δ Bion ∼ e − 2 S B = e − 2 S I / N δ Renormalon ? = QFT on R 3 × S 1 in R → ∞ ◮ QFT on R 4 Def. Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 6 / 27

  7. Resurgence structure in R d − 1 × S 1 No renormalons in SU (2) and SU (3) QCD(adj.) on R 3 × S 1 [Anber–Sulejmanpasic ’14] Questions: What cancels the bion ambiguity? (PFD?) 1 Are there no renormalons in other theories? ( SU ( ∀ N )?) 2 How does δ Renormalon on R 4 emerge in R → ∞ ? 3 Answers [O.M.–Takaura, Ashie–O.M.–Suzuki–Takaura]: Enhancement of PFD due to Z N twisted BC: k ! → N k k ! 1 PT Semi-classical object δ PFD ∼ e − 16 π 2 / g 2 R 4 δ Instanton ∼ e − 2 S I R 3 × S 1 PFD ∼ e − 16 π 2 / ( Ng 2 ) δ ′ δ Bion ∼ e − 2 S I / N No renormalons in SU ( ∀ N ) QCD(adj.) on R 3 × S 1 2 “Renormalon precursor” R →∞ Renormalon on R 4 → 3 Helpful in giving a unified understanding on resurgence in QFT Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 7 / 27

  8. Contents Introduction 1 Factorial growth in QFT Resurgence structure in R d − 1 × S 1 PFD-type ambiguity on circle compactification 2 Enhancement mechanism and bion Vacuum energy of SUSY C P N model Renormalon on circle compactification 3 ∄ Renormalon ambiguities Subtlety of large N limit on circle compactification “Renormalon precursor” and decompactification Summary 4 Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 8 / 27

  9. Enhancement of PFD ambiguity Enhanced PFD-type ambiguities cancel bion ambiguities PFD: k ! ⇒ N k k ! δ PFD ∼ e − 16 π 2 / g 2 ⇒ δ ′ PFD ∼ e − 16 π 2 / ( Ng 2 ) ↔ δ bion | R 3 × S 1 Mechanism ( ∼ Linde problem [’80] in finite-temperature QFT): S 1 compactification → IR divergences 1 � � 1 � d d − 1 p d d p · · · = finite → · · · = ∞ at IR 2 π R p d ∈ Z / R twisted BC → twist angles as IR regulators 2 � g 2 � k 1 1 Amplitude ( Ng 2 ) k p 2 → = ⇒ = p 2 + ( p d + m A ) 2 m A R p d =0 , A =1 � �� � Enhancement! Let us study the C P N model on R × S 1 ◮ Bion calculus [Fujimori-Kamata-Misumi-Nitta-Sakai ’18] Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 9 / 27

  10. 2-dimensional C P N model with twisted BC 2D C P N − 1 model with Z N -twisted BC ( A = 1, 2, . . . , N ) � S = 1 z A ∂ µ z A − j µ j µ + f (¯ z A z A − 1) � � d 2 x ∂ µ ¯ g 2 z A ← → z A z A = 1) ∂ µ z A , f is an auxiliary field (¯ where j µ = (1 / 2 i )¯ # of vacuum bubble diagrams, T k ( j µ → ¯ zz , propagator → 1) � δ � 2 k 1 1 δ zz ) 2 � k ∼ 4 k Γ( k + 1 / 2) � T k = (¯ (2 k )! δ ¯ z δ z k ! Amplitude of ( k + 1)-loop connected diagram � � k +1 � V 2 ( g 2 ) k F 2 k ( p i , 1 , m A ) dp i , 1 � p 2 =0 , A =1 − → � 2 k (2 π R ) k +1 2 π i =1 [ q 2 i , 1 + m 2 A + f 0 ] i =1 ( F 2 k : 2 k th-order polynomial, q : linear combination of { p i } , f 0 = � f � ) � � IR divergence in massless limit m 2 d 2 p → A + f 0 → 0 ( dp ) Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 10 / 27

  11. IR structure and enhancement mechanism A + f 0 = 1 / ( NR ) 2 + f 0 works as an IR regulator m 2 ◮ m 2 A ≫ f 0 � g 2 � k � Ng 2 � k ∼ V 2 1 → V 2 1 A =1 − Enhancement! R 2 ( m A R ) k − 1 R 2 4 π N 4 π ◮ m 2 A ≪ f 0 � g 2 � k ( m A R ) α ∼ V 2 ❤❤❤❤❤❤ ✭ � ✭✭✭✭✭✭ Enhancement ❤ R 2 ( f 0 R 2 ) ( k + α − 1) / 2 4 π α ≥ 0 Dependence on NR Λ (Λ = µ e − 2 π/ ( β 0 g 2 ) : dynamical scale) ◮ NR Λ ≪ 1 (Bion calculus is valid) f 0 R ∼ g 2 � 4 π ⇒ [ m 2 A = O ( g 0 )] ≫ [ f 0 = O ( g 4 )] Enhancement! ◮ NR Λ ≫ 1 (“Large N ”) m 2 1 ✭✭✭✭✭✭ ❤❤❤❤❤❤ ✭ f 0 ∼ Λ 2 A ⇒ ( NR Λ) 2 ≪ 1 = Enhancement ❤ f 0 Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 11 / 27

  12. Discussions on enhancement mechanism PT Semi-classical object δ PFD ∼ e − 16 π 2 / g 2 R 4 δ Instanton ∼ e − 2 S I R 3 × S 1 PFD ∼ e − 16 π 2 / ( Ng 2 ) δ ′ δ Bion ∼ e − 2 S I / N Enhancement phenomenon is consistent with bion Borel singularities at m A R = A / N = 1 / N , 2 / N , . . . ���� ���� 1-bion 2-bion Disconnected diagram ( n connected) is suppressed by 1 / N n − 1 �� k T k ( g 2 ) k � ◮ # of connected diagrams ∼ ln Sum over flavor indices gives rise to further N factor Vacuum energy of 2D SUSY C P N model (following slides) ◮ NR Λ ≫ 1 [Ishikawa–O.M.–Shibata–Suzuki] ◮ NR Λ ≪ 1 [Fujimori–Kamata–Misumi–Nitta–Sakai ’18] Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 12 / 27

  13. Vacuum energy of 2D SUSY C P N − 1 model 2D SUSY C P N − 1 model with SUSY breaking term � � σ P + + σ P − ) χ A � S = N z A D µ D µ z A + ¯ d 2 x χ A ( / − ¯ σσ + ¯ D + ¯ λ � � � d 2 x δǫ z A z A − 1 � + m A ¯ π R N A where D µ = ∂ µ + iA µ , γ 5 = − i γ x γ y , P ± = (1 ± γ 5 ) / 2, z A z A = 1, ¯ z A χ A = 0 and ¯ z A χ A = 0. and we impose ¯ Vacuum energy as a function of δǫ + E (1) δǫ + E (2) δǫ 2 + . . . E ( δǫ ) = E (0) ���� =0 Vacuum energy at NR Λ ≪ 1 [Fujimori-Kamata-Misumi-Nitta-Sakai] N − 1 b � ( − 1) b ( b !) 2 ( NR Λ) 2 b − 1 E Bion = 2Λ b =1 � δǫ + [ − 2 γ E − 2 ln (4 π b /λ R ) ∓ π i ] δǫ 2 + . . . � × Perturbative ambiguities in R d − 1 × S 1 Okuto Morikawa (Kyushu U.) 2020/9/24 Resurgence 2020 13 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend