resurgence and non perturbative physics
play

Resurgence and Non-Perturbative Physics Gerald Dunne University of - PowerPoint PPT Presentation

Resurgence and Non-Perturbative Physics Gerald Dunne University of Connecticut Non-Perturbative Methods in Quantum Field Theory Abdus Salam ICTP, Trieste, September 3-6, 2019 GD & Mithat nsal, review: 1603.04924 A. Ahmed & GD:


  1. Resurgence and Non-Perturbative Physics Gerald Dunne University of Connecticut Non-Perturbative Methods in Quantum Field Theory Abdus Salam ICTP, Trieste, September 3-6, 2019 GD & Mithat Ünsal, review: 1603.04924 A. Ahmed & GD: arXiv:1710.01812 GD, arXiv:1901.02076 O.Costin & GD, 1904.11593, ... [DOE Division of High Energy Physics]

  2. Physical Motivation • non-perturbative definition of QFT • Minkowski vs. Euclidean QFT • "sign problem" in finite density QFT • dynamical & non-equilibrium physics in path integrals • phase transitions (Lee-Yang and Fisher zeroes) • common thread: analytic continuation of path integrals • question: does resurgence give (useful) new insight?

  3. Physical Motivation what does a Minkowski path integral mean, computationally? � i � � � � − 1 � D A exp � S [ A ] versus D A exp � S [ A ]

  4. Physical Motivation what does a Minkowski path integral mean, computationally? � i � � � � − 1 � D A exp � S [ A ] versus D A exp � S [ A ] 1.0 0.5 - 6 - 4 - 2 2 4 6 - 0.5 - 1.0  e − 2 3 x 3 / 2 , x → + ∞ 2 √ π x 1 / 4  � ∞   1 e i ( 1  3 t 3 + x t ) dt ∼ 2 π −∞ sin ( 2 3 ( − x ) 3 / 2 + π  4 )  x → −∞ ,  √ π ( − x ) 1 / 4  • massive cancellations ⇒ Ai(+5) ≈ 10 − 4

  5. Physical Motivation • what does a Minkowski space path integral mean? � i � � � � � − 1 D A exp � S [ A ] versus D A exp � S [ A ] • finite dimensions: Stokes/Airy paradigm • since we need complex analysis and contour deformation to make sense of oscillatory ordinary integrals, it is natural to explore similar methods for path integrals • Question: can resurgence and Picard-Lefschetz theory be used to tame this long-standing problem? • phase transition = change of dominant saddle (complex)

  6. Resurgence from Mathematics Resurgence: ‘new’ idea in mathematics (Écalle 1980; Dingle 1960s; Stokes 1850) resurgence = unification of perturbation theory and non-perturbative physics resurgence = global complex analysis with asymptotic series • perturbative series expansion − → trans-series expansion • trans-series ‘well-defined under analytic continuation’ • non-perturbative saddle expansions are potentially exact • perturbative and non-perturbative physics entwined • ODEs, PDEs, difference equations, fluid mechanics, QM, Matrix Models, QFT, Chern-Simons, String Theory, ... • define the path integral constructively as a trans-series

  7. Resurgence: Implications for QFT • the physics message from Écalle’s resurgence theory: different critical points are related in subtle and powerful ways

  8. The Big Question • Can we make physical, mathematical and computational sense of a Lefschetz thimble expansion of a path integral? � i � � Z ( � ) = D A exp � S [ A ] � i � �� � � N th e i φ th ” = ” D A × ( J th ) × exp R e � S [ A ] th thimble • Z ( � ) → Z ( � , masses , couplings , µ, T, B, ... ) • Z ( � ) → Z ( � , N ) , and N → ∞ for a phase transition • resurgence and Stokes transitions: metamorphosis/transmutation of trans-series structures across phase transitions

  9. Decoding a Resurgent Trans-series in QFT � � S [ A saddle ] × ( fluctuations ) × ( qzm ) D A e − 1 � S [ A ] = e − 1 � all saddles non-perturbative perturbative quasi-zero-mode • expansions in different directions are quantitatively related • expansions about different saddles are quantitatively related

  10. Resurgence: Preserving Analytic Continuation Properties d Stirling expansion for ψ ( x ) = dx ln Γ( x ) is divergent ψ (1 + z ) ∼ ln z + 1 1 1 252 z 6 + · · · + 174611 1 2 z − 12 z 2 + 120 z 4 − 6600 z 20 − . . . • functional relation: ψ (1 + z ) = ψ ( z ) + 1 � z

  11. Resurgence: Preserving Analytic Continuation Properties d Stirling expansion for ψ ( x ) = dx ln Γ( x ) is divergent ψ (1 + z ) ∼ ln z + 1 1 1 252 z 6 + · · · + 174611 1 2 z − 12 z 2 + 120 z 4 − 6600 z 20 − . . . • functional relation: ψ (1 + z ) = ψ ( z ) + 1 � z • reflection formula: ψ (1 + z ) − ψ (1 − z ) = 1 z − π cot( π z ) ∞ Im ψ (1 + iy ) ∼ − 1 2 y + π � e − 2 π k y ⇒ 2 + π k =1 “raw” asymptotics is inconsistent with analytic continuation • resurgence: add infinite series of non-perturbative terms "non-perturbative completion"

  12. All-Orders Steepest Descents Berry/Howls 1991: hyperasymptotics • steepest descent contour integral thru n th saddle point � 1 − 1 g 2 f ( z ) = − 1 g 2 f n T ( n ) ( g 2 ) I ( n ) ( g 2 ) = dz e 1 /g 2 e � C n • T ( n ) ( g 2 ) : beyond the usual Gaussian approximation • asymptotic expansion of fluctuations about the saddle n : ∞ � T ( n ) ( g 2 ) ∼ T ( n ) g 2 r r r =0

  13. All-Orders Steepest Descents Berry/Howls 1991: hyperasymptotics • steepest descent contour integral thru n th saddle point � 1 − 1 g 2 f ( z ) = − 1 g 2 f n T ( n ) ( g 2 ) I ( n ) ( g 2 ) = dz e 1 /g 2 e � C n • T ( n ) ( g 2 ) : beyond the usual Gaussian approximation • asymptotic expansion of fluctuations about the saddle n : ∞ � T ( n ) ( g 2 ) ∼ T ( n ) g 2 r r r =0 • universal resurgence relation ( F nm ≡ f m − f n ): � ( F nm ) 2 ( − 1) γ nm =( r − 1)! F nm T ( m ) ( r − 1) T ( m ) ( r − 1)( r − 2) T ( m ) � T ( n ) + + + . . . ( F nm ) r r 0 1 2 2 π i m • fluctuations about different saddles are explicitly related !

  14. Resurgence: canonical example = Airy function • expansions about the two saddles are explicitly related n + 1 n + 5 � � � � a n = Γ Γ � 1 , 5 48 , 385 4608 , 85085 � 6 6 = 663552 , . . . � 4 � n n ! (2 π ) 3 • large order behavior: a n ∼ ( n − 1)! � � 1 − 5 1 25 1 n + n 2 − . . . � 4 � n 36 2592 (2 π ) 3

  15. Resurgence: canonical example = Airy function • expansions about the two saddles are explicitly related n + 1 n + 5 � � � � a n = Γ Γ � 1 , 5 48 , 385 4608 , 85085 � 6 6 = 663552 , . . . � 4 � n n ! (2 π ) 3 • large order behavior: a n ∼ ( n − 1)! � � 1 − 5 1 25 1 n + n 2 − . . . � 4 � n 36 2592 (2 π ) 3 • re-express with factors of action difference � 5 � 2 385 � � a n ∼ ( n − 1)! � 4 1 � 4 1 1 − ( n − 1)( n − 2) − . . . ( n − 1) + � 4 � n 3 48 3 4608 (2 π ) 3 generic Dingle/Berry/Howls large order/low order relation • similar behavior in QM, matrix models; leading in QFT ...

  16. Borel summation: extracting physics from asymptotic series Borel transform of series, where c n ∼ n ! , n → ∞ ∞ ∞ c n � � c n g n n ! t n f ( g ) ∼ − → B [ f ]( t ) = n =0 n =0 new series typically has a finite radius of convergence

  17. Borel summation: extracting physics from asymptotic series Borel transform of series, where c n ∼ n ! , n → ∞ ∞ ∞ c n � � c n g n n ! t n f ( g ) ∼ − → B [ f ]( t ) = n =0 n =0 new series typically has a finite radius of convergence Borel summation of original asymptotic series: � ∞ S f ( g ) = 1 B [ f ]( t ) e − t/g dt g 0 • the singularities of B [ f ]( t ) provide a physical encoding of the global asymptotic behavior of f ( g ) , which is also much more mathematically efficient than the asymptotic series

  18. Borel singularities Borel transform typically has singularities: directional Borel sums: � e iθ ∞ S θ f ( g ) = 1 B [ f ]( t ) e − t/g dt g 0 C + C - • Borel singularities ↔ non-perturbative physical objects • resurgence: isolated poles, algebraic & logarithmic cuts • “Borel plane is more physical than the physical plane”

  19. Resurgence: canonical example = Airy function • formal large x solution to ODE ≡ "perturbation theory" e ∓ 2 3 x 3 / 2 ∞ n + 1 n + 5 � � � � ( ∓ 1) n Γ Γ � 2 Ai( x ) � y ′′ = x y ⇒ � 6 6 ∼ � 4 2 π 3 / 2 x 1 / 4 3 x 3 / 2 � n Bi( x ) n ! n =0

  20. Resurgence: canonical example = Airy function • formal large x solution to ODE ≡ "perturbation theory" e ∓ 2 3 x 3 / 2 ∞ n + 1 n + 5 � � � � ( ∓ 1) n Γ Γ � 2 Ai( x ) � y ′′ = x y ⇒ � 6 6 ∼ � 4 2 π 3 / 2 x 1 / 4 3 x 3 / 2 � n Bi( x ) n ! n =0 • non-perturbative connection formula: = ± i 3 Bi ( x ) +1 � e ∓ 2 πi � 2 e ∓ πi 2 e ∓ πi 3 x 3 Ai ( x ) Ai • how do we recover this non-pert. result from the series?

  21. Resurgence: canonical example = Airy function • Borel sum of the Ai ( x ) series factor: ∞ n + 1 n + 5 � � � � t n ( − 1) n Γ Γ � 1 � 6 , 5 � 6 6 n ! = 2 F 1 6 , 1; − t n ! n =0 • inverse transform recovers the Ai(x) formal series: � ∞ Z ( x ) = 4 � 1 6 , 5 � dt e − 4 3 x 3 / 2 t 2 F 1 3 x 3 / 2 6 , 1; − t 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend