ubiquity of the stokes phenomenon
play

Ubiquity of the Stokes phenomenon 2 Various places where the Stokes - PDF document

1 Ubiquity of the Stokes phenomenon 2 Various places where the Stokes phenomenon occurs. Asympt. behaviour of sols of the Airy Eqn (Stokes...). Introduction to Global behaviour of vanishing cycles of functions Stokes structures X C in


  1. 1 Ubiquity of the Stokes phenomenon 2 Various places where the Stokes phenomenon occurs. Asympt. behaviour of sols of the Airy Eqn (Stokes...). Introduction to Global behaviour of vanishing cycles of functions Stokes structures X → C in alg. geom. (Pham, Berry...) I: dimension one Analogy with the theory of wild ramification in Arithmetic (Deligne...). Claude Sabbah Frobenius manifolds and quantum cohomology (Dubrovin...). Centre de Math´ ematiques Laurent Schwartz tt ∗ geometry (Cecotti & Vafa...). ´ Ecole polytechnique, CNRS, Universit´ e Paris-Saclay Geometric Langlands correspondence with wild Palaiseau, France ramification (Frenkel & B. Gross...). Programme SISYPH ANR-13-IS01-0001-01/02 Wild character varieties (Boalch...). Similarities with the theory of stability conditions on some Abelian categories (Bridgeland, Kontsevich...). Introduction toStokes structures – p. 1/22 Introduction toStokes structures – p. 2/22 Aim: RH corresp. for merom. ODE’s 3 Other approaches 4 Riemann-Hilbert corresp. (categorical) on a punctured Riemann surf. X ∗ = X � S : Explicit computation of sols (integral formulas)  realizing Stokes data with effective solutions   Lin. repres.   ( � theory of multisummation)  Merom. flat bdles  loc. cst.     π 1 ( X ∗ ) on ( X, S ) ⇐ ⇒ sheaves of ⇐ ⇒ Constructing moduli spaces of diff. eqns and realizing    ↓     the RHB corresp. by a map between moduli spaces. finite rk on X ∗ with reg. sing. at S  GL n ( C ) replacing the group GL n ( C ) with other reductive algebraic groups. Riemann-Hilbert-Birkhoff corresp. (categorical) on a Extending the categorical approach to the Tannakian punctured Riemann surf. X ∗ = X � S : aspect ( � Differential Galois theory).   �  Stokes-filt.  Generalized   Merom. flat bdles ⇐ ⇒ loc. syst. ⇐ ⇒ monodromy data on ( X, S )     on � X (Stokes data) Introduction toStokes structures – p. 3/22 Introduction toStokes structures – p. 4/22 Stokes phenomenon in dim. one 5 Asympt. analysis in dim. one 6 ∆ = complex disc, complex coord. z . Real or. blow-up: � ∆ = [0 , ε ) × S 1 , coord. ρ, e iθ . � � Linear cplx diff. eqn. d f/ d z = A ( z ) · f , ∆ → ∆ ( ρ, e iθ ) �− → z = ρe iθ ̟ : S 1 → 0 A ( z ) matrix of size d × d , merom. pole at z = 0 . Gauge equiv.: P ∈ GL d ( C ( { z } )) , ∆ = ker z∂ z : C ∞ ∆ → C ∞ Sheaf A e e e ∆ A ∼ B = P [ A ] := P − 1 AP + P − 1 P ′ ( A e ∆ ∗ = O e ∆ ∗ )   ϕ k ∈ 1 z C [ 1 ϕ ′ z ] Sheaves A rd 0 ⊂ A S 1 ⊂ A mod 0 . 1 ... S 1 S 1  + C   Norm. form: B =  C = const. Basic exact sequence: z ϕ ′ non reson. d → A rd 0 → ̟ − 1 C [ 0 − − → A S 1 − [ z ] ] − → 0 S 1 Theorem (Levelt-Turrittin). Given A , ∃ a formal gauge transf. � )) s.t. B = � ( z 1 /p ) P ∈ GL d ( C ( P [ A ] is a normal form. Introduction toStokes structures – p. 5/22 Introduction toStokes structures – p. 6/22 Asympt. analysis in dim. one 7 Asympt. analysis in dim. one 8 Real or. blow-up: � Theorem (Hukuhara-Turrittin). ∆ = [0 , ε ) × S 1 , coord. ρ, e iθ . � � Locally on S 1 , ∃ a lifting � P ∈ GL d ( A S 1 [1 /z ]) of � P s.t. ∆ → ∆ ( ρ, e iθ ) �− → z = ρe iθ ̟ : P [ A ] = � � P [ A ] = B normal form. S 1 → 0 Corollary . The sheaf on � ∆ of sols of ∆ = ker z∂ z : C ∞ ∆ → C ∞ Sheaf A e e e ∆ d f/ d z = A ( z ) · f ( A e ∆ ∗ = O e ∆ ∗ ) Sheaves A rd 0 ⊂ A S 1 ⊂ A mod 0 . having entries in A rd 0 , resp. in A mod 0 , is a real constr. sheaf, S 1 S 1 e e ∆ ∆ Example: ϕ = u ( z ) /z q s.t. u ( z ) ∈ C [ z ] , q � 1 , and constant on any open interval I of S 1 s.t. u (0) � = 0 or u ( z ) ≡ 0 . Then ∀ α ∈ C and ∀ e iθ o ∈ S 1 ∀ k , Re( ϕ k ) does not vanish. � A rd 0 ⇒ Re( u (0) e − ikθ o ) < 0 , Example. ϕ = z − q u ( z ) , u (0) � = 0 , ⇐ z α e ϕ ∈ θ o ⇒ θ = 1 A mod 0 ⇐ ⇒ idem or u ( z ) ≡ 0 . On S 1 , Re ϕ = 0 ⇐ q (arg u (0)+ π/ 2) mod Z · π/q. θ o Introduction toStokes structures – p. 6/22 Introduction toStokes structures – p. 7/22

  2. The Malgrange-Sibuya theorem 9 Stokes-filtered loc. syst. (non-ramif. case) 10 Fix a norm. form ( irregular type ), e.g. non-ramified: Aim : To specify the struct. of sol. space of a merom. ODE without d ) + C B = diag( ϕ ′ 1 , . . . , ϕ ′ making explicit the realization as functions, z . fixing the normal form. B -marked connections ( ∼ : holom. gauge equiv.): The local system L on S 1 : Sols of d f/ d z = A ( z ) f � �� ( A, � P ) | B = � Iso( B ) = P [ A ] ∼ ∆ = [0 , ε ) × S 1 and restricted to on ∆ ∗ , extended to � { 0 } × S 1 . Hence L ⇐ ⇒ monodromy of sols. Stokes sheaf St( B ) on S 1 : For every ϕ ∈ z − 1 C [ z − 1 ] , a pair of nested � � subsheaves L <ϕ ⊂ L � ϕ of L . Id + Q | Q ∈ End( A rd 0 St( B ) θ = ) , (Id + Q )[ B ] = B θ L � ϕ,θ = { f θ | e − ϕ f ( z ) ∈ A mod 0 } θ Theorem (Malgrange-Sibuya). L <ϕ,θ = { f θ | e − ϕ f ( z ) ∈ A rd 0 } θ Iso( B ) ≃ H 1 ( S 1 , St( B )) Hukuhara-Turrittin ⇒ L <ϕ = L � ϕ except if ϕ = ϕ k for some k = 1 , . . . , d . Introduction toStokes structures – p. 8/22 Introduction toStokes structures – p. 9/22 Stokes-filtered loc. syst. (non-ramif. case) 11 Stokes-filtered loc. syst. (non-ramif. case) 12 Aim : To give an intrinsic characterization of the Let ( L , L • ) be a non-ramif. Stokes-filt. loc. syst. category of Stokes-filtered local systems. Φ := { ϕ | rk gr ϕ L � = 0 } is finite and � Definition . A (non-ramif.) Stokes-filt. loc. syst. on S 1 : ϕ ∈ Φ rk gr ϕ L = rk L . A loc. syst. L on S 1 , ≃ � ( ∗ ) ∀ ϕ ∈ z − 1 C [ z − 1 ] , an R -const. subsheaf L � ϕ ⊂ L ∀ ϕ ∈ Φ , ∀ θ , ψ � θ ϕ gr ψ L θ . L � ϕ,θ s.t. Level structure ⇒ ψ = ϕ, or ∀ θ ∈ S 1 , L � ψ,θ ⊂ L � ϕ,θ ⇐ Re( ψ − ϕ ) < 0 near θ , Levels of B (hence A ) : { q 1 < · · · < q r } setting ∀ θ , L <ϕ,θ = � q i := pole ord. of some ψ − ϕ, ϕ � = ψ ∈ Φ . ψ< θ ϕ L � ψ,θ L <ϕ and gr ϕ L := L � ϕ / L <ϕ � # Levels ( A ) = 1 . � theory of summability. 2 q Stokes directions for each ( ϕ, ψ ) . one asks that ∀ ϕ , # Levels ( A ) > 1 . � theory of multisummability. gr ϕ L is a local system on S 1 , ∀ θ , dim L � ϕ,θ = � Principal and Secondary Stokes directions. ψ � θ ϕ rk gr ψ L . Remark: can define ( L , L • ) over Z , Q , . . . Introduction toStokes structures – p. 10/22 Introduction toStokes structures – p. 11/22 Stokes-filtered loc. syst. (non-ramif. case) 13 Deligne’s RH correspondence 14 Theorem ∀ open I ⊂ S 1 which ∋ at most one Stokes dir. Theorem (Deligne’s RH corresp.). ∀ pair in Φ , then ( ∗ ) holds on I (e.g. | I | � π/q r + ε ).  � Any morphism λ : ( L , L • ) → ( L ′ , L ′  Merom. flat bdles • ) graded on I  Merom. flat bdles norm. form w.r.t. some iso ( ∗ ) and ( ∗ ) ′ , hence is strict , i.e. , of norm. form  on (∆ , 0)  λ ( L � ϕ ) = L ′ ∀ ϕ , � ϕ ∩ λ ( L ) . on (∆ , 0) Uniqueness of the splitting if # Level ( A ) = 1 and moreover | I | = π/q + ε . ≀ ≀ Duality .  The exact sequences   graded → L >ϕ −    0 − → L � ϕ − → L − → 0 Stokes-filt.   gr Stokes-filt. → L � − ϕ − loc. syst. 0 − → L < − ϕ − → L − → 0   loc. syst.   on S 1   are switched by duality H om C ( • , C ) . on S 1 E xt k ( • , C )=0 if k � 1 . ⇒ gr ϕ ( L ∨ ) ≃ (gr − ϕ L ) ∨ . Introduction toStokes structures – p. 12/22 Introduction toStokes structures – p. 13/22 Stokes data (non-ramif. case, pure level) 15 Stokes data (non-ramif. case, pure level) 16 Case # Level ( A ) = 1 (level = q ) Case # Level ( A ) = 1 (level = q ) Stokes data Opposed filtrations ⇒ unique splittings ( L ℓ ) ℓ ∈ Z / 2 q Z : C -vect. spaces, → gr F L 2 µ = � ∼ k gr F τ 2 µ : L 2 µ − k L 2 µ ∼ Isoms S ℓ +1 : L ℓ − → L ℓ +1 ℓ → gr F L 2 µ +1 = � � ∼ k gr k τ 2 µ +1 : L 2 µ +1 − F L 2 µ +1 F • L 2 µ ր Exhaustive filtrations F • L 2 µ +1 ց � Stokes multipliers Opposedness property : Σ ℓ +1 := τ ℓ +1 ◦ S ℓ +1 ◦ τ − 1 : gr F L ℓ − → gr F L ℓ +1 L 2 µ = � ℓ ℓ ℓ k F k L 2 µ ∩ S 2 µ 2 µ − 1 ( F k L 2 µ − 1 ) Σ ℓ +1 block lower/upper triangular, L 2 µ +1 = � k F k L 2 µ +1 ∩ S 2 µ +1 ℓ ( F k L 2 µ ) 2 µ diag. blocks (Σ ℓ +1 ) jj are isos. ℓ Introduction toStokes structures – p. 14/22 Introduction toStokes structures – p. 15/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend