a fast stokes solver
play

A Fast Stokes Solver Isuru Fernando University of Illinois, Urbana - PowerPoint PPT Presentation

A Fast Stokes Solver Isuru Fernando University of Illinois, Urbana Champaign idf2@illinois.edu December 6, 2017 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 1 / 18 Stokes PDEs 2 u p + f = 0 u = 0 where u


  1. A Fast Stokes Solver Isuru Fernando University of Illinois, Urbana Champaign idf2@illinois.edu December 6, 2017 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 1 / 18

  2. Stokes PDEs µ ∇ 2 u − ∇ p + f = 0 ∇ · u = 0 where u is the velocity vector, µ is the viscosity, p is the pressure and f is the force. Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 2 / 18

  3. Stokes PDEs: 3D case � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 ∂ z 2 � ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v � − ∂ p µ ∂ y + f y = 0 ∂ z 2 � ∂ 2 w ∂ x 2 + ∂ 2 w ∂ y 2 + ∂ 2 w � − ∂ p µ ∂ z + f z = 0 ∂ z 2 ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z = 0 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 3 / 18

  4. Green’s Function solution: The Stokeslet u ( r ) = F · J ( r ) p ( r ) = F · r 4 π | r | 3 where � � r = x y z � I 1 | r | + rr � J ( r ) = | r | 3 8 πµ Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 4 / 18

  5. Green’s Function solution: The Stokeslet | r | 2 + x 2     u xy xz   f x | r | 2 + y 2 1 v xy yz      = f y | r | 2 + z 2       8 πµ | r | 3 w xz yz    f z p 2 µ x 2 µ y 2 µ z Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 5 / 18

  6. Current implementation pytential uses 9 kernel functions. (Reuse 3 kernels) Drawbacks of this method are, Takes more storage than necessary Redundant computations Derivative relationships in Taylor series Common Subexpression Elimination Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 6 / 18

  7. Revisiting local expansion Let x be the targets and y be the sources and f be the charge/force D p � x f ( y ) φ ( x − y ) � � x = c ( x − c ) p f ( y ) φ ( x − y ) ≈ p ! | p |≤ k � f ( y ) D p x φ ( x − y ) � y = c depends on source and center, while ( x − c ) p Here p ! depends on target and center Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 7 / 18

  8. Local expansion for Stokes In the stokes equation case u is a linear combination of 3 functions φ 1 , φ 2 , φ 3 and there are 3 charges f 1 , f 2 , f 3 3 � u ( x − y ) = f i ( y ) φ i ( x − y ) i =1 �� 3 � � D p i =1 f i ( y ) φ i ( x − y ) x � x = c � ( x − c ) p ≈ p ! | p |≤ k Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 8 / 18

  9. Revisiting multipole expansion Let x be the targets and y be the sources and f be the charge/force D p � x φ ( x − y ) � � y = c ( y − c ) p f ( y ) φ ( x − y ) ≈ f ( y ) p ! | p |≤ k or equivalently D p � x φ ( x − y ) � y = c � f ( y )( y − c ) p f ( y ) φ ( x − y ) ≈ p ! | p |≤ k � D p x φ ( x − y ) � depends on target and center, while f ( y )( y − c ) p y = c Here p ! depends on source and center Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 9 / 18

  10. Multipole expansion for Stokes In the stokes equation case conside the first velocity component u which is a linear combination of 3 functions φ 1 , φ 2 , φ 3 and there are 3 charges f 1 , f 2 , f 3   D p 3 3 � x φ i ( x − y ) � y = c � � � ( y − c ) p u ( x − y ) = f i ( y ) φ i ( x − y ) ≈  f i ( y )  p ! i =1 i =1 | p |≤ k � 3 D p � � x φ i ( x − y ) � y = c � � f i ( y )( y − c ) p u ( x − y ) ≈ p ! i =1 | p |≤ k Needs 12 multipoles Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 10 / 18

  11. Multipole to local translation for Stokes Let φ 1 , 1 , φ 1 , 2 , φ 1 , 3 , φ 2 , 1 , . . . , φ 3 , 3 be the 12 multipole kernels. Then, u = φ 1 , 1 + φ 1 , 2 + φ 1 , 3 v = φ 2 , 1 + φ 2 , 2 + φ 2 , 3 w = φ 3 , 1 + φ 3 , 2 + φ 3 , 3 p = φ 4 , 1 + φ 4 , 2 + φ 4 , 3 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 11 / 18

  12. Stokes PDE Derivatives � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 (1) ∂ z 2 � ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v � − ∂ p µ ∂ y + f y = 0 (2) ∂ z 2 � ∂ 2 w ∂ x 2 + ∂ 2 w ∂ y 2 + ∂ 2 w � − ∂ p µ ∂ z + f z = 0 (3) ∂ z 2 ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z = 0 (4) Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 12 / 18

  13. Stokes PDE Derivatives � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 (1) ∂ z 2 � ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v � − ∂ p µ ∂ y + f y = 0 (2) ∂ z 2 � ∂ 2 w ∂ x 2 + ∂ 2 w ∂ y 2 + ∂ 2 w � − ∂ p µ ∂ z + f z = 0 (3) ∂ z 2 ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z = 0 (4) ∂ (1) ∂ x + ∂ (2) ∂ y + ∂ (3) gives us ∂ z ∂ 2 p ∂ x 2 + ∂ 2 p ∂ y 2 + ∂ 2 p ∂ z 2 = 0 (5) Pressure term satisfies the Laplace equation ! Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 12 / 18

  14. Laplace Derivative Reduction ∂ 2 p ∂ x 2 + ∂ 2 p ∂ y 2 + ∂ 2 p ∂ z 2 = 0 ∂ a + b +2 p ∂ x a +2 y b + ∂ a + b +2 p ∂ x a y b +2 + ∂ a + b +2 p ∂ x a y b z 2 = 0 ∂ a + b +2 p ∂ x a y b z 2 = − ∂ a + b +2 p ∂ x a +2 y b − ∂ a + b +2 p ∂ x a y b +2 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 13 / 18

  15. Laplace Derivative Reduction Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 14 / 18

  16. Stokes Derivative Reduction � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 (1) ∂ z 2 ∂ a + b +2 u � ∂ a + b +1 p ∂ x a +1 y b − ∂ a + b +2 u ∂ x a +2 y b − ∂ a + b +2 u ∂ x a y b z 2 = 1 � (a) ∂ x a y b +2 µ Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 15 / 18

  17. Stokes Derivative Reduction � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 (1) ∂ z 2 ∂ a + b +2 u � ∂ a + b +1 p ∂ x a +1 y b − ∂ a + b +2 u ∂ x a +2 y b − ∂ a + b +2 u ∂ x a y b z 2 = 1 � (a) ∂ x a y b +2 µ � ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v � − ∂ p ∂ y + f y = 0 (2) µ ∂ z 2 ∂ a + b +2 v � ∂ a + b +1 p ∂ x a y b +1 − ∂ a + b +2 v ∂ x a +2 y b − ∂ a + b +2 v ∂ x a y b z 2 = 1 � (b) ∂ x a y b +2 µ Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 15 / 18

  18. Stokes Derivative Reduction � ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u � − ∂ p µ ∂ x + f x = 0 (1) ∂ z 2 ∂ a + b +2 u � ∂ a + b +1 p ∂ x a +1 y b − ∂ a + b +2 u ∂ x a +2 y b − ∂ a + b +2 u ∂ x a y b z 2 = 1 � (a) ∂ x a y b +2 µ � ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v � − ∂ p ∂ y + f y = 0 (2) µ ∂ z 2 ∂ a + b +2 v � ∂ a + b +1 p ∂ x a y b +1 − ∂ a + b +2 v ∂ x a +2 y b − ∂ a + b +2 v ∂ x a y b z 2 = 1 � (b) ∂ x a y b +2 µ ∂ x + ∂ v ∂ u ∂ y + ∂ w ∂ z = 0 (4) ∂ a + b +1 w = − ∂ a + b +1 u ∂ x a +1 y b − ∂ a + b +1 v (c) ∂ x a y b +1 ∂ x a y b z Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 15 / 18

  19. Stokes Derivative Reduction ∂ a + b +2 u � ∂ a + b +1 p ∂ x a +1 y b − ∂ a + b +2 u ∂ x a +2 y b − ∂ a + b +2 u ∂ x a y b z 2 = 1 � (a) ∂ x a y b +2 µ ∂ a + b +2 v � ∂ a + b +1 p ∂ x a y b +1 − ∂ a + b +2 v ∂ x a +2 y b − ∂ a + b +2 v � ∂ x a y b z 2 = 1 (b) ∂ x a y b +2 µ ∂ a + b +1 w = − ∂ a + b +1 u ∂ x a +1 y b − ∂ a + b +1 v (c) ∂ x a y b z ∂ x a y b +1 ∂ a + b +2 p ∂ x a y b z 2 = − ∂ a + b +2 p ∂ x a +2 y b − ∂ a + b +2 p (d) ∂ x a y b +2 Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 16 / 18

  20. Stokeslet Kernel Derivative Reduction | r | 2 + x 2     u xy xz   f x | r | 2 + y 2 1 v xy yz      = f y | r | 2 + z 2       8 πµ | r | 3 w xz yz    f z p 2 µ x 2 µ y 2 µ z � � satisfies the Stokes PDEs u v w p Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 17 / 18

  21. Stokeslet Kernel Derivative Reduction | r | 2 + x 2     u xy xz   f x | r | 2 + y 2 1 v xy yz      = f y | r | 2 + z 2       8 πµ | r | 3 w xz yz    f z p 2 µ x 2 µ y 2 µ z � � satisfies the Stokes PDEs u v w p | r | 2 + x 2     u 0 1 v 0 xy      =     8 πµ | r | 3 w 0 xz    p 0 2 µ x � � u 0 v 0 w 0 p 0 satisfies the Stokes PDEs Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 17 / 18

  22. Questions? Isuru Fernando (UIUC) A Fast Stokes solver December 6, 2017 18 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend