colour precision top physics
play

Colour & Precision Top Physics Peter Skands (Monash University) - PowerPoint PPT Presentation

Colour & Precision Top Physics Peter Skands (Monash University) Perturbative aspects of top physics The top quark mass Top quark modelling at colliders A new approach to coherence Non-perturbative aspects of top physics Collective effects


  1. Colour & Precision Top Physics Peter Skands (Monash University) Perturbative aspects of top physics The top quark mass Top quark modelling at colliders A new approach to coherence Non-perturbative aspects of top physics Collective effects in pp collisions? Quo Vadis? VINCIA AIP Summer Meeting VINCIA RMIT, December, 2019

  2. <latexit sha1_base64="md98SCkERFzdPFk85/1vlp4eCs=">AB+HicbVDJSgNBEK1xjXHJqEcvjUHwFGZc0GPQi8cIZoHMEHo6PZMmPQvdNUIc8iVePCji1U/x5t/YWQ6a+KDg8V4VfWCTAqNjvNtrayurW9slrbK2zu7exV7/6Cl01wx3mSpTFUnoJpLkfAmCpS8kylO40DydjC8nfjtR60SJMHGXcj2mUiFAwikbq2ZUoIh6mBL2AqgLHPbvq1JwpyDJx56QKczR69pfXT1ke8wSZpFp3XSdDv6AKBZN8XPZyzTPKhjTiXUMTGnPtF9PDx+TEKH0SpspUgmSq/p4oaKz1KA5MZ0xoBe9ifif180xvPYLkWQ58oTNFoW5JNPTQqkLxRnKEeGUKaEuZWwAVWUocmqbEJwF19eJq2zmnteu7y/qNZv5nGU4AiO4RcuI63EDmsAgh2d4hTfryXqx3q2PWeuKNZ85hD+wPn8AiV+TBg=</latexit> <latexit sha1_base64="HXvisY5ZKQgitkCchUKesQVy60Y=">AB/nicbVDLSsNAFJ34rPUVFVduBovgqiQ+0GXRjcsK9gFNKJPpB06maQzN0IJAX/FjQtF3Pod7vwbp20W2npg4Mw593LvPUEiuAbH+baWldW19ZLG+XNre2dXtv6njVFHWoLGIVTsgmgkuWQM4CNZOFCNRIFgrGN5O/NYjU5rH8gHGCfMj0pc85JSAkbr24cgLiMpGOfYgxjD9QN61K07VmQIvErcgFVSg3rW/vF5M04hJoIJo3XGdBPyMKOBUsLzspZolhA5Jn3UMlSRi2s+m6+f4xCg9HMbKPAl4qv7uyEik9TgKTGVEYKDnvYn4n9dJIbz2My6TFJiks0FhKvDkUpMF7nHFKIixIYQqbnbFdEAUoWASK5sQ3PmTF0nzrOqeVy/vLyq1myKOEjpCx+gUuegK1dAdqMGoihDz+gVvVlP1ov1bn3MSpesoucA/YH1+QOLcpXf</latexit> The Top Quark s ๏ Heaviest particle in the SM e wn elementary particle: Jet • m t ~ 170 GeV/c 2 ~ m Au e q • Lifetime: 10 -24 s ( Γ t ~ 1.5 GeV) . s • Mainly pair produced at colliders: ¯ q g b W + s gg → t ¯ q → t ¯ t q ¯ t Dominates at LHC Dominated at Tevatron t h s • Complicated (cascade) decays: ! p ¯ p p t → ¯ t → bW + ¯ bW − ! y s ! { q 0 , `⌫ } W → { q ¯ ¯ t ! → s ! ๏ quarks → jets ๏ b-quarks → b-jets ¯ W – b s b-quarks → b-jets l 2 Complex multi-body final states n (+ hadronisation) ➜ highly nontrivial to t ¯ • ν measure mass with high precision (<1%) e Illustration from: P Skands, Nature 514 (2014) 174 2 � P E T ER S K A ND S

  3. The Top Quark Mass Bezrukov et al.’12; Degrassi et al.’13; + several more recent works ๏ ➤ Top-Higgs Yukawa coupling SM probably has metastable vacuum • Gateway to new physics • + SM vacuum stability ๏ Definition (from corrections to Higgs potential, assuming no NP) • For this talk, pole mass ~ Breit- Wigner mass ~ MC mass • Important to resolve “renormalon ambiguity” ≲ 100 MeV; not the subject of this talk. “this particular CMS result is mostly ๏ Recent Measurements sensitive to uncertainties coming from the theoretical knowledge of the top • Running of top quark mass quark in Quantum Chromodynamics” CMS-TOP-19-007 • Γ t = 1.9 ± 0.5 GeV ATLAS-CONF-2019-038 • LHC Δ m t ~ 50 MeV ~ 0.3% See eg LHCTopWG Twiki page 3 � P E T ER S K A ND S

  4. <latexit sha1_base64="Lj0k2nEoBvldSUhT0uvWUeRSoY=">AB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseiF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRI3g7GdzO/cS1EbF6xEnC/YgOlQgFo2ildi+gOsNpv1xq+4cZJV4OalAjka/NUbxCyNuEImqTFdz03Qz6hGwSflnqp4QlYzrkXUsVjbjxs/m5U3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMb/xMqCRFrthiUZhKgjGZ/U4GQnOGcmIJZVrYWwkbU0Z2oRKNgRv+eV0rqoepfVq4dapX6bx1GEziFc/DgGupwDw1oAoMxPMrvDmJ8+K8Ox+L1oKTzxzDHzifP6Aoj8Q=</latexit> <latexit sha1_base64="t6XaytdIsHwdU4AeCNDSjPNP5sM=">AB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYns8mY2dlplcIS7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjVjDdYLGPdDqjhUijeQIGStxPNaRI3gpGd1O/9cS1EbF6wHC/YgOlAgFo2ilOvZKZbfizkCWiZeTMuSo9Upf3X7M0ogrZJIa0/HcBP2MahRM8kmxmxqeUDaiA96xVNGIGz+bHTohp1bpkzDWthSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDGz4RKUuSKzReFqSQYk+nXpC80ZyjHlCmhb2VsCHVlKHNpmhD8BZfXibN84p3UbmqX5art3kcBTiGEzgD6hCvdQgwYw4PAMr/DmPDovzrvzMW9dcfKZI/gD5/MH4m2M/w=</latexit> What top quarks look like In theory m t e p t X Monte Carlo Event Generators: j “Pythia", “Herwig”, … j Decays, showers, hadronisation, … p X ¯ t µ If you are measuring the top quark mass, E T you want to know: how accurately is this transfer function known/modelled? In practice ➜ want “good physics” under the hood. + good validations (preferably in-situ). 4 � P E T ER S K A ND S

  5. The Physics of Hadronic Jets ๏ More than just a (fixed-order perturbative) expansion in α s Bremsstrahlung : accelerated particles radiate ⟷ • Infinite-order perturbative structures of indefinite particle most of my research number ⟷ universal amplitude structures in QFT Confinement (strong gluon fields) ⟷ Hadronization phase transition ⟷ quantum-classical correspondence. Non- perturbative physics. String dynamics. String breaks. Hadrons ⟷ Spectroscopy (incl excited and exotic states) , lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams → multiparton interactions, diffraction, … � 5 P E T ER S K A ND S

  6. Types of Bremsstrahlung Showers ๏ Parton Showers are based on iterated 1 → 2 splittings • Each parton undergoes a sequence of splittings 2 2 • Exact in limit that one diagram dominates: collinear + splittings; good starting point for describing jets Some interference effects can be included via “angular ๏ ordering” or “dipole functions” (~partitioned interference terms) (E,p) conservation achieved via (ambiguous) recoil effects ๏ ๏ At Monash, we develop an Antenna Shower , in which splittings are fundamentally 2 → 3 (+ working on 2 → 4…) 2 • Evolution in terms of colour dipoles/antennae + + Intrinsically coherent (to leading power of 1/N C2 ~ 10%) ๏ + Manifestly Lorentz invariant kinematics with local (E,p) cons. ๏ (+ Markovian/Invertible: important for future applications) Includes dipole interference ๏ 6 � P E T ER S K A ND S

  7. Modelling Top Pair Production and Decay VINCIA ๏ In limit Γ t ~ 0, factorise production and decay • These stages are showered independently (regardless of which type of shower) m t < Q evol < Q cut Bremsstrahlung Showers √ s < Q evol < Q cut (perturbative) w o fl r u o l o c F R ⊗ IF colour flow II colour flow I: initial F: final R: resonance IF colour flow ⊗ PRODUCTION DECAY(S) • Production ISR + FSR shower • Resonance-Decay FSR shower preserves Breit-Wigner shape • preserves Breit-Wigner shape • 7 � P E T ER S K A ND S M O NA S H U.

  8. Interference between production and decay? VINCIA ๏ Would modify BW shape. • But expect small effects. Cutoff of perturbative shower Q cut ~ 1 GeV ; Γ t ~ 1.5 GeV (in SM); Interference only from scales 1 GeV < Q < 1.5 GeV m t < Q evol < Q cut √ s < Q evol < Q cut w fl o u r o o l c I F w o fl r u o l o c F R ⊗ IF colour flow II colour flow I: initial F: final R: resonance IF colour flow ⊗ ๏ ➤ Ignored in narrow-width approximation (eg PYTHIA). Production showered to Q cut , decay as well. ๏ An e + e - study found Δ m t < 50 MeV but not repeated for LHC (to my knowledge) ๏ Khoze, Sjöstrand, Phys.Lett. B328 (1994) 466 though see Ravasio et al, Eur.Phys.J. C78 (2018) no.6, 458 � 8 P E T ER S K A ND S M O NA S H U.

  9. Shower Ambiguities: Coherence VINCIA ๏ Default “Pythia” showers not fully coherent for “IF” or “RF” flows • All initial-state partons treated as II. (Some coherence by rapidity ~angular vetos) • All final-state partons treated as FF. (MECs ➤ 1st emission in top decay correct; + b mass corrections for all emissions.) w o fl r u o l o c F R Recoils and phase space ⊗ IF colour flow Recoils and Recoils and II colour flow phase space phase space I: initial F: final R: resonance IF colour flow ⊗ • RF not coherent from 2 nd emission onwards. (So eg Powheg does not help.) • Issues for soft wide-angle, recoil effects, and some phase-space effects. 9 � P E T ER S K A ND S M O NA S H U.

  10. Coherence in VINCIA VINCIA Brooks, Skands, Phys.Rev. D100 (2019) no.7, 076006 ARXIV:1907.08980 ๏ Explicit IF and (recently) RF antennae • Based on coherent dipole-antenna patterns, with full t and b mass effects. • Collective recoils for RF emissions: coherent radiation recoils against “crossed” top • + VINCIA now integrated within PYTHIA 8.301 w o fl r u o l o c F R ⊗ IF colour flow II colour flow I: initial F: final R: resonance IF colour flow ⊗ ๏ + Under development (with H. Brooks, R. Verheyen, C. Preuss) ( ) Interleaved resonance decays ➤ interference between production and decays. ๏ Matrix-Element Merging & Iterated ME Corrections. (So far it is a pure shower.) ๏ Automated uncertainty variations (in the same style as internal Pythia 8 ones). ๏ Electroweak showers, second-order antenna functions, … ๏ � 10 P E T ER S K A ND S M O NA S H U.

  11. Prime Motivation: Top Quark Mass VINCIA Slide from H. Brooks Ravasio et al, Eur.Phys.J. C78 (2018) no.6, 458 arXiv:1801.03944 “... the very minimal message that can be drawn from our work is that, in order to assess a meaningful theoretical error in top-mass measurements, the use of di ff erent shower models, associated with di ff erent NLO+PS generators, is mandatory.” 11 � P E T ER S K A ND S M O NA S H U.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend