perturbative unitarity constraints on non susy higgs
play

Perturbative Unitarity Constraints On (non-)SUSY Higgs Portals - PowerPoint PPT Presentation

Perturbative Unitarity Constraints On (non-)SUSY Higgs Portals Devin Walker SLAC arXiv:1310.8286 and in collaboration with K. Betre and S. El Hedri (to appear) A Brief History of New Physics Historically perturbative unitarity arguments


  1. Perturbative Unitarity Constraints On (non-)SUSY Higgs Portals Devin Walker SLAC arXiv:1310.8286 and in collaboration with K. Betre and S. El Hedri (to appear)

  2. A Brief History of New Physics • Historically perturbative unitarity arguments have reliably indicated when new, perturbative physics will appear: Fermi theory: Dimension six operators violate unitarity around 350 GeV. Rescued: W boson at 80 GeV. Light pion effective theory: Pion scattering violates unitarity around 1.2 GeV. Rescued: Axial and vector resonances at 800 MeV. Electroweak theory: WW scattering requires new physics around 1.2 TeV. Rescued: SM Higgs boson at 125.5 GeV. A primary motivation for 14 TeV LHC! 2

  3. ! H. Murayama, LP2013

  4. • Today: Use perturbative unitarity constraints and the thermal dark matter hypothesis to place bounds on Higgs portal dark matter as well as the visible particles needed for annihilation. (Aside: Essentially, trying to replace naturalness arguments with more rigorous perturbative unitarity arguments to get a better understanding of when new physics will appear.) 4

  5. Today’s Talk • Basic Philosophy • A (Non-SUSY) Higgs portal • Two models with fermionic dark matter • Perturbative unitarity arguments/relic abundance • Bounds/Signatures • NMSSM Higgs portal • NMSSM review • Perturbative unitarity arguments/relic abundance • Mass/bounds on SUSY Breaking scales • Some Signatures • Conclusions 5

  6. Basic Philosophy 6

  7. Basic Philosophy • For the basic philosophy, consider a generic Higgs portal: 1. A dark Higgs that couples directly to dark matter. 2. The dark and the SM Higgses mix to facilitate dark matter annihilations. 7

  8. Basic Philosophy • Now consider simple WW scattering amplitudes: g 2 M gauge = ( s + t ) ( 4 m 2 W g 2 ( s + t ) cos 2 θ M SM higgs = − 4 m 2 W g 2 ( s + t ) sin 2 θ M dark higgs = − 4 m 2 W 8

  9. Basic Philosophy • Now consider simple WW scattering amplitudes: g 2 M gauge = ( s + t ) ( 4 m 2 W g 2 ( s + t ) cos 2 θ M SM higgs = − 4 m 2 W g 2 ( s + t ) sin 2 θ M dark higgs = − 4 m 2 W Both higgses needed to unitarize WW scattering because of the mixing. 9

  10. Basic Philosophy • Now consider simple WW scattering amplitudes: g 2 M gauge = ( s + t ) ( 4 m 2 W g 2 ( s + t ) cos 2 θ M SM higgs = − 4 m 2 W g 2 ( s + t ) sin 2 θ M dark higgs = − 4 m 2 W Both higgses needed to unitarize WW scattering because of the mixing. • As the dark Higgs mass is raised, one is forced to set the mixing angle to zero to satisfy unitarity. 10

  11. Basic Philosophy • However, (in the decoupled dark Higgs limit) the relic abundance prevents . sin θ → 0 ( DM SM Higgs SM DM SM Higgs ⟨ σ | v | ⟩ ∼ sin 4 θ ⟨ σ | v | ⟩ ∼ sin 2 θ cos 2 θ . m 2 m 2 χ χ 11

  12. Basic Philosophy • However, (in the decoupled dark Higgs limit) the relic abundance prevents . sin θ → 0 ( DM SM Higgs SM DM SM Higgs ⟨ σ | v | ⟩ ∼ sin 4 θ ⟨ σ | v | ⟩ ∼ sin 2 θ cos 2 θ . m 2 m 2 χ χ 12

  13. Basic Philosophy • However, (in the decoupled dark Higgs limit) the relic abundance prevents . sin θ → 0 ( DM SM Higgs SM DM SM Higgs ⟨ σ | v | ⟩ ∼ sin 4 θ ⟨ σ | v | ⟩ ∼ sin 2 θ cos 2 θ . m 2 m 2 χ χ • The dark Higgs mass cannot completely decoupling. 13

  14. Basic Philosophy • General Philosophy: Generate tension between unitarity and low- energy observables (e.g. relic abundance) to produce upper bounds on new particles. • Basic claim: Relic abundance constraints (WIMP dark matter) + SM Higgs mass constraints + Unitarity constraints = New (tighter) Physics Bounds 14

  15. A (non-SUSY) Higgs Portal 15

  16. A (non-SUSY) Higgs Portal • A Higgs portal: � � � � 2 � 2 h † h − v 2 φ 2 − u 2 � �� � h † h − v 2 φ 2 − u 2 � � + λ 3 V = λ 1 + λ 2 2 2 2 2 � � L = χ λ χ V + i λ χ A γ 5 Φ χ . 16

  17. A (non-SUSY) Higgs Portal • A Higgs portal: � � � � 2 � 2 h † h − v 2 φ 2 − u 2 � �� � h † h − v 2 φ 2 − u 2 � � + λ 3 V = λ 1 + λ 2 2 2 2 2 mixing term � � L = χ λ χ V + i λ χ A γ 5 Φ χ . dark matter 17

  18. A (non-SUSY) Higgs Portal • A Higgs portal: � � � � 2 � 2 h † h − v 2 φ 2 − u 2 � �� � h † h − v 2 φ 2 − u 2 � � + λ 3 V = λ 1 + λ 2 2 2 2 2 mixing term � � L = χ λ χ V + i λ χ A γ 5 Φ χ . Pseudo-scalar coupling for Model 2. dark matter Important for dark matter annihilation channels. • Two models: Model 1: λ χ A = 0, Model 2: λ χ A and λ χ V are non-zero, 18

  19. A (non-SUSY) Higgs Portal • Masses and mixings: λ 2 � � � h ′ � � cos θ − sin θ � � h � m 2 h = 2 λ 1 v 2 3 1 − + . . . = 4 λ 1 λ 2 ρ ′ sin θ cos θ ρ � 1 + λ 2 v 2 � � m 2 ρ = 2 λ 2 u 2 3 u 2 + . . . 4 λ 2 sin θ ∼ λ 3 v 2 2 λ 2 u. 19

  20. A (non-SUSY) Higgs Portal • Masses and mixings: λ 2 � � � h ′ � � cos θ − sin θ � � h � m 2 h = 2 λ 1 v 2 3 1 − + . . . = 4 λ 1 λ 2 ρ ′ sin θ cos θ ρ � 1 + λ 2 v 2 � � m 2 ρ = 2 λ 2 u 2 3 u 2 + . . . 4 λ 2 sin θ ∼ λ 3 v 2 2 λ 2 u. dark Higgs mixing angle • Interested in the limit where the dark Higgs is heavy but the mixing angle is non-trivial. 20

  21. Relic Abundance • t-channel annihilation: (heavy dark Higgs limit) sin 4 θ � 1 − m 2 � � 2 � h m 2 λ 4 χ A + 6 λ 2 χ A λ 2 χ V + λ 4 − m 2 λ 2 χ A + λ 2 � � � ⟨ σ | v | ⟩ = + . . . h � 2 m 2 χ χ V χ V � χ − m 2 4 π 2 m 2 χ h • s-channel annihilation: (heavy dark Higgs limit) � 2 � χ A sin 2 θ cos 2 θ � � � ff = λ 2 m 2 m 2 χ − m 2 g m f � f f ⟨ σ | v | ⟩ ¯ 1 − + . . . m 2 � 2 4 π m W � χ − m 2 4 m 2 χ f = u,d,c,s,t,b,e,µ, τ h W sin 2 θ cos 2 θ � � �� � = λ 2 χ A m 2 g 2 1 − m 2 � V V h 3 m 4 V − 4 m 2 V m 2 χ + 4 m 4 ⟨ σ | v | ⟩ V V + . . . � 2 m 2 χ 8 π � m 4 χ − m 2 4 m 2 χ V = W,Z V h χ A sin 2 θ � ⟨ σ | v | ⟩ hh = λ 2 h 3 λ 2 1 − m 2 9 u 2 h � 2 + . . . 2 π m 2 � χ − m 2 4 m 2 χ h 21

  22. Relic Abundance • t-channel annihilation: (heavy dark Higgs limit) sin 4 θ � 1 − m 2 � � 2 � h m 2 λ 4 χ A + 6 λ 2 χ A λ 2 χ V + λ 4 − m 2 λ 2 χ A + λ 2 � � � ⟨ σ | v | ⟩ = + . . . h � 2 m 2 χ χ V χ V � χ − m 2 4 π 2 m 2 χ h • s-channel annihilation: (heavy dark Higgs limit) � 2 � χ A sin 2 θ cos 2 θ � � � ff = λ 2 m 2 m 2 χ − m 2 g m f � f f ⟨ σ | v | ⟩ ¯ 1 − + . . . m 2 � 2 4 π m W � χ − m 2 4 m 2 χ f = u,d,c,s,t,b,e,µ, τ h W sin 2 θ cos 2 θ � � �� � = λ 2 χ A m 2 g 2 1 − m 2 � V V h 3 m 4 V − 4 m 2 V m 2 χ + 4 m 4 ⟨ σ | v | ⟩ V V + . . . � 2 m 2 χ 8 π � m 4 χ − m 2 4 m 2 χ V = W,Z V h Proportional to χ A sin 2 θ � ⟨ σ | v | ⟩ hh = λ 2 h 3 λ 2 1 − m 2 9 u 2 h � 2 + . . . pseudo-scalar 2 π m 2 � χ − m 2 4 m 2 χ h coupling *Lopez-Honorez, Schwetz and Zupan, Phys. Lett. B 716, 179 22

  23. Unitarity Considerations • Dark matter/dark matter scattering: (Similar to unitarity bounds* on heavy 4th generation fermions) DM DM Dark Higgs DM Dark Higgs DM * Furman, Hinchliffe and Chanowitz, Nuclear Physics B153, 402; Physics Letters B78, 285 23

  24. Full Unitarity Considerations (Goldstone Boson Limit) � � L , Z L Z L 2 , hh 2 , ρρ W + L W − √ √ √ 2 , h ρ , hZ L , ρ Z L M c 2 s 2 1 sc ⎛ ⎞ 1 0 0 s 2 c 2 ⎛ ⎞ √ √ √ 32 − sc 0 0 0 0 2 8 8 8 √ √ 4 32 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ c 2 s 2 1 3 ⎜ ⎟ sc 0 0 ⎜ ⎟ s 2 c 2 − sc √ √ ⎜ 0 0 0 0 ⎟ 4 4 4 ⎜ 8 8 ⎟ √ ⎜ 8 8 ⎟ 32 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ c 2 c 2 3 c 4 3 s 2 c 2 3 sc 3 ⎜ ⎟ 0 0 ⎜ ⎟ s 2 s 2 √ √ ⎜ ⎟ 0 0 κ δ ξ 4 4 4 ⎜ ⎟ 8 8 √ ⎜ ⎟ 8 32 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − λ 1 M (0) ⎜ ⎟ − λ 3 ⎜ ⎟ = s 2 s 2 3 s 2 c 2 3 s 4 3 cs 3 ⎜ 0 0 ⎟ c 2 c 2 ⎜ ⎟ √ √ 0 0 I δ α β 4 π ⎜ 4 4 4 ⎟ 8 8 4 π √ ⎜ ⎟ 8 32 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3 sc 3 3 cs 3 3 c 2 s 2 ⎜ ⎟ sc sc − sc − sc 0 0 ξ β η 0 0 ⎜ ⎟ √ √ √ ⎜ ⎟ 2 2 √ 8 8 8 4 ⎜ ⎟ 32 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ c 2 s 2 ⎜ sc ⎟ − sc 0 0 0 0 0 ⎜ ⎟ 0 0 0 0 0 ⎜ ⎟ 2 2 ⎜ ⎟ 4 4 ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ s 2 c 2 sc − sc 0 0 0 0 0 0 0 0 0 0 2 2 4 4 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend