where is susy
play

Where is SUSY? Lawrence Hall University of California, Berkeley - PowerPoint PPT Presentation

Johns Hopkins 36th Workshop Galileo Galilei Institute October 2012 Where is SUSY? Lawrence Hall University of California, Berkeley SUSY Spectrum, 1984 Text SUSY Spectrum, 1984 Text Over 3 decades of susy: seismic shifts! (I) 2011- A


  1. Johns Hopkins 36th Workshop Galileo Galilei Institute October 2012 Where is SUSY? Lawrence Hall University of California, Berkeley

  2. SUSY Spectrum, 1984 Text

  3. SUSY Spectrum, 1984 Text Over 3 decades of susy: seismic shifts!

  4. (I) 2011- A New Era of Data

  5. A 125 GeV Higgs Boson Is good news for perturbative Susy

  6. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Origin of ? v

  7. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Origin of ? v Natural Unnatural m h 100 125 150 Inconclusive

  8. Large Range of is Possible in MSSM ˜ m B) Split SUSY A) SM below ˜ m (Fermionic superparters at 1 TeV) tan β Giudice and Strumia 1108.6077 ˜ m

  9. No Superpartners Yet!! Jets + missing transverse energy A compilation of CMS results from from 2011 data squark and gluino production 8/13/12

  10. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Any superpartners at the TeV scale?

  11. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Any superpartners at the TeV scale? R parity violation: udd A compressed spectrum

  12. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Any superpartners at the TeV scale? R parity violation: udd A compressed spectrum Adding a singlet

  13. Is SUSY Natural? Unnatural Natural ˜ m � v ˜ m ∼ v Any superpartners at the TeV scale? Dark Matter R parity violation: udd A compressed spectrum Yukawa unification Adding a singlet Spread Susy

  14. 2012 Result on Direct Detection -39 -39 -39 10 10 10 XENON100 (2012) DAMA/Na observed limit (90% CL) ] ] ] 2 2 2 -40 -40 -40 WIMP-Nucleon Cross Section [cm WIMP-Nucleon Cross Section [cm WIMP-Nucleon Cross Section [cm 10 10 10 Expected limit of this run: CoGeNT 1 expected ± σ DAMA/I 2 expected ± σ -41 -41 -41 10 10 10 SIMPLE (2012) XENON10 (2011) COUPP (2012) CRESST-II (2012) -42 -42 -42 10 10 10 ZEPLIN-III (2012) -43 -43 -43 XENON100 (2011) EDELWEISS (2011/12) 10 10 10 CDMS (2010/11) -44 -44 -44 10 10 10 -45 -45 -45 10 10 10 6 7 8 910 6 7 8 910 6 7 8 910 20 20 20 30 30 30 40 50 40 50 40 50 100 100 100 200 200 200 300 400 300 400 300 400 1000 1000 1000 2 2 2 WIMP Mass [GeV/c WIMP Mass [GeV/c WIMP Mass [GeV/c ] ] ]

  15. Implications for Neutralino DM well tempered bino ê higgsino, tan b = 10 ˜ b/ ˜ h 1000 m m D D M M = = 10 - 45 m m Z h M 1 in GeV ê ê 10 - 45 300 2 2 100 10 - 44 10 - 46 30 30 100 300 1000 m in GeV “The Well-Tempered Region is excluded” Farina, Kadastik, Raidal, Pappadopulo, Pata, Strumia 1104.3572 revised Aug 2012

  16. Indirect Detection via Gamma Rays Fermi LAT 1108.3546 FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila- b channel, the τ + τ − channel, the tion cross section for the b¯ µ + µ − channel, and the W + W − channel. The most generic cross section ( ∼ 3 · 10 − 26 cm 3 s − 1 for a purely s-wave cross sec- tion) is plotted as a reference. Uncertainties in the J factor are included.

  17. (II) Natural SUSY 1. MSSM ?? 2. Adding a singlet

  18. Fine-Tuning in the MSSM: 2012

  19. Fine-Tuning in the MSSM: 2012 ∆ = ∂ ln m h ∂ ln p m h = 124 − 126 GeV Minimize ∆ tan β > 10 David Pinner, Josh Ruderman, LJH 1112.2703 m Q 3 = m U 3 = m ˜ t messenger scale of 10 TeV The MSSM is fine-tuned ∆ > 100

  20. Adding a Singlet: λ SH u H d

  21. Adding a Singlet: λ SH u H d λ < 0 . 7 David Pinner, Josh Ruderman, LJH 1112.2703

  22. Adding a Singlet: λ SH u H d λ < 0 . 7 David Pinner, Josh Ruderman, LJH 1112.2703 Why not go to larger ? λ To very large ? λ Natural theory with heavy Higgs

  23. Adding a Singlet: λ SH u H d David Pinner, Josh Ruderman, LJH 1112.2703 1 < λ < 2

  24. Adding a Singlet: λ SH u H d David Pinner, Josh Ruderman, LJH 1112.2703 1 < λ < 2 ∆ < 10

  25. Adding a Singlet: λ SH u H d David Pinner, Josh Ruderman, LJH 1112.2703 1 < λ < 2 ∆ < 10 Explains why we haven’t seen superpartners yet

  26. (III) TeV Susy Dark Matter Coupling Unification Spread Susy

  27. Direct Detection of Dark Matter Exciting times spin independent 10 - 43 ahead: Xenon100 10 - 44 0.1 s p , n @ cm 2 D D LUX c cc h 10 - 45 @ Xenon1T 10 - 46 0.01 10 - 47 0 500 1000 1500 2000 m DM @ GeV D Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

  28. TeV Scale from Cosmological Abundance R parity m ∼ TeV ˜ m < T R ˜ LSP is a SM superpartner No dilution

  29. TeV Scale from Cosmological Abundance R parity m ∼ TeV ˜ m < T R ˜ LSP is a SM superpartner No dilution ρ DM ρ DM obs , c ˜ m The forbidden window ∼ TeV ≈ T R

  30. TeV Scale from Cosmological Abundance R parity m ∼ TeV ˜ m < T R ˜ LSP is a SM superpartner No dilution ρ DM ρ DM obs , c p m ∼ α ˜ T eq M P l ˜ m The forbidden window ∼ TeV ≈ T R

  31. Current Limits on Bino/Higgsino DM tan b = 2 1 1 LEP c - c + 1000 0.1 0.1 Parameter space W thermal W cdm 10 800 Fermi XENON100 SI M 1 @ GeV D 10 600 ( M 1 , µ, tan β ) c h cc = 0 100 400 100 200 IceCube W - W + XENON100 SD Assume - 1000 - 500 0 500 1000 m @ GeV D tan b = 20 Ω LSP = Ω obs LEP c - c + 1000 W thermal 0.1 0.1 W cdm 800 Fermi 1 1 M 1 @ GeV D XENON100 SI 600 10 “Blind Spot” 400 10 100 100 200 1000 1000 IceCube W - W + c h χχ M 1 + µ sin 2 β = 0 c h cc = 0 / XENON100 SD - 1000 - 500 0 500 1000 m @ GeV D Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

  32. Future Probes of Bino/Higgsino DM tan b = 2 5000 LEP c - c + Parameter space W thermal = W cdm Fermi M 1 @ GeV D 1000 c h cc = 0 LUX SI ( M 1 , µ, tan β ) XENON1T SI XENON1T SD 100 Assume - 5000 - 1000 - 100 100 1000 5000 m @ GeV D tan b = 20 Ω LSP = Ω obs 5000 LEP c - c + W thermal = W cdm Fermi M 1 @ GeV D 1000 LUX SI “Blind Spot” XENON1T SD c h cc = 0 XENON1T SI c h χχ M 1 + µ sin 2 β = 0 / 100 - 5000 - 1000 - 100 100 1000 5000 m @ GeV D Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

  33. Bino/Higgsino DM from Freeze-out current limits 40 LEP c - c + 20 10 Assume Xenon100 SI tan b 5 IceCube W + W - Xenon100 SD Ω F O LSP = Ω obs 2 c h cc = 0 1 - 1000 - 500 0 500 1000 m @ GeV D LUX and IceCube reach H ~ 2013 L 40 LEP c - c + Parameter space 20 LUX SI 10 tan b ( M 1 , µ, tan β ) → ( µ, tan β ) 5 IceCube W + W - IceCube tt H reach L H reach L 2 c h cc = 0 1 - 1000 - 500 0 500 1000 m @ GeV D “Blind Spot” XENON 1T reach H ~ 2017 L 40 LEP c - c + 20 c h χχ M 1 + µ sin 2 β = 0 / Xenon1T SI 10 tan b 5 Xenon1T SD 2 Cliff Cheung, David Pinner, Josh Ruderman, LJH c h cc = 0 1 1210... - 1000 - 500 0 500 1000 m @ GeV D

  34. LSP Dark Matter Summary Cosmological abundance of LSP m ∼ TeV ˜ provides independent argument for For freeze-out (bino/Higgsino and bino/wino) Current experiments have removed about half the space LUX and Xenon1T will explore most of the space

  35. (III) TeV Susy Dark Matter Coupling Unification Spread Susy

  36. Gauge Coupling Unification 1.4 1.2 1. 0.8 g a 0.6 0.4 0.2 10 2 10 4 10 6 10 8 10 10 10 12 10 14 E � GeV �

  37. Gauge Coupling Unification 1.4 1.2 1. 0.8 g a 0.6 0.4 0.2 10 2 10 4 10 6 10 8 10 10 10 12 10 14 E � GeV � occurs in the Standard Model! Weak scale susy improves the precision: ✏ g = 0 . 12 ✏ g = 0 . 014 →

  38. Gauge Coupling Unification Weak scale susy improves the precision: ✏ g = 0 . 12 ✏ g = 0 . 014 → But does not usefully constrain the superparticle masses m susy = 100 GeV m susy = 100 TeV 60 60 50 50 40 40 a i - 1 a i - 1 30 30 20 20 10 10 0 0 100 10 5 10 8 10 11 10 14 10 17 10 20 10 5 10 8 10 11 10 14 10 17 10 20 m @ GeV D m @ GeV D ✏ g = 0 . 014 ✏ g = 0 . 017 → Logarithmic evolution!

  39. Yukawa Coupling Unification τ 1.0 t − b − τ 0.40 b − τ 0.9 0.35 y t tan b = 50 y b 0.8 0.30 tan b = 20 y b 0.7 y i 0.25 y i y t 0.6 0.20 0.5 y t 0.15 0.4 0.10 100 10 5 10 8 10 11 10 14 10 17 100 10 5 10 8 10 11 10 14 10 17 need m @ GeV D m @ GeV D t-b- Once again, weak scale susy improves the precision δ fin = 0 . 12 ✏ g = 0 . 60 → b

  40. Yukawa Coupling Unification τ 1.0 t − b − τ 0.40 b − τ 0.9 0.35 y t tan b = 50 y b 0.8 0.30 tan b = 20 y b 0.7 y i 0.25 y i y t 0.6 0.20 0.5 y t 0.15 0.4 0.10 100 10 5 10 8 10 11 10 14 10 17 100 10 5 10 8 10 11 10 14 10 17 need m @ GeV D m @ GeV D t-b- Once again, weak scale susy improves the precision δ fin = 0 . 12 ✏ g = 0 . 60 → b Yukawas span 6 decades: Is a hint? b/ τ

  41. Constraining ˜ m Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301 δ fin b ∝ µ δ fin tan β b m ˜ q

  42. Constraining ˜ m Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301 δ fin b Need large ∝ µ δ fin tan β tan β b m ˜ q bino/Higgsino LSP Cannot decouple dark matter squarks Power law behavior!

  43. Constraining ˜ m Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301 δ fin b Need large ∝ µ δ fin tan β tan β b m ˜ q q < 10 TeVtan β bino/Higgsino LSP Cannot decouple m ˜ dark matter squarks 50 Power law behavior!

  44. (III) TeV Susy Dark Matter Coupling Unification Spread Susy

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend