perturbative unitarity constraints on a susy higgs portal
play

Perturbative Unitarity Constraints on a SUSY Higgs portal Sonia El - PowerPoint PPT Presentation

Perturbative Unitarity Constraints on a SUSY Higgs portal Sonia El Hedri with Kassahun Betre, Devin Walker ERC Workshop, Schloss Waldthausen November 12, 2014 arXiv:1407.0395 arXiv:1410.1534 1 / 40 Finding New Energy Scales Application to


  1. Perturbative Unitarity Constraints on a SUSY Higgs portal Sonia El Hedri with Kassahun Betre, Devin Walker ERC Workshop, Schloss Waldthausen November 12, 2014 arXiv:1407.0395 arXiv:1410.1534 1 / 40

  2. Finding New Energy Scales Application to the NMSSM Overview Unitarity bounds Unitarity and Perturbativity Unitarity and the NMSSM parameters Relic density constraints Parameter scan and results 2 / 40

  3. Finding New Energy Scales Application to the NMSSM Parameter scan and results 3 / 40

  4. GeV 10 21 GeV GeV 10 18 GeV 10 Planck scale 10 15 GeV 10 GeV 10 12 GeV New scales? GeV 10 9 GeV 10 GeV 10 6 GeV 10 EW GeV 10 3 GeV 10 ? } EW scale H W H W , Z J Heavy pions 0 1 GeV 10 QCD 4 / 40

  5. Finding new energy scales How to look for the next energy scale? I Break down of the theory? ∆ SM perturbative up to the GUT scale ∆ Electroweak vacuum metastable Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia, [arXiv:1205.6497] I New observations ∆ Evidence for Dark Matter, neutrino masses, . . . ∆ Unknown/too high energy scale I Naturalness arguments ∆ Upper bounds depend on the fine-tuning I Other possibilities?? 5 / 40

  6. Finding new energy scales How to look for the next energy scale? I Break down of the theory? ∆ SM perturbative up to the GUT scale ∆ Electroweak vacuum metastable Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia, [arXiv:1205.6497] I Look for new phenomena ∆ Evidence for Dark Matter, neutrino masses, . . . ∆ Unknown/too high energy scales I Naturalness arguments ∆ Avoid fine-tuning of the Higgs mass ∆ Upper bounds depend on the tolerated fine-tuning I Perturbative Unitarity 6 / 40

  7. Unitarity in the Standard Model I Breaking of perturbative unitarity is a sign for new physics I Light pion e ff ective theory : unitarity violated around 1 . 2 GeV ∆ Axial and vector resonances at 800 MeV I Fermi theory : Unitarity violated around 350 GeV ∆ W boson at 80 GeV I Electroweak theory : unitarity violated around 1 TeV ∆ Higgs boson at 125 GeV 7 / 40

  8. E ff ects of unitarity on couplings ReT ii < 1 2 Dimensionless Unitarity Dimensionful Unitarity A κ φ 1 1 φ 2 2 A 2 A 2 123 A λ ∝ g A ~ λ 2 2 φ 3 s − m φ 2 3 1 φ 2 A κ φ 1 2 A 2 Bounds on quartic couplings Bounds on mass ratios Lee, Quigg, Thacker [Phys. Rev. D 16, Schuessler, Zeppenfeld [arXiv:0710.5175] 1519 (1977)] 8 / 40

  9. Anchoring the spectrum: Low Energy Observables I Unitarity constrains BSM theories ∆ Upper bounds on dimensionless couplings ∆ Upper bounds on ratios of scales I Does not prevent decoupling What if new phenomena are observed? I Couple unitarity to low energy observables 9 / 40

  10. Unitarity and Dark Matter I Dark Matter is one of the only evidences of new physics beyond the SM I Unknown mass, known relic density I Only gravitational couplings observed Thermal Dark Matter I Dark Matter relic density is obtained through annihilation to lighter particles I Dark Matter cannot decouple from the light sector I Relic Density known as a function of DM couplings 10 / 40

  11. Thermal Dark Matter Heavy dark matter requires large couplings ∆ Unitarity violation at large mass g 2 ˜ χ 0 SM 123 φ 1 . λ 2 ∝ g χ 0 SM g 2 ˜ 123 φ 1 s − m ∝ g SM 2 GeV Ge 3 I Existing Unitarity Bound : 120 TeV for λ = 4 π Griest and Kamionkowski, 1990 I Much tighter bounds for specific theories! 11 / 40

  12. A recipe for constraining new models I Applies to I Models predicting a Dark Matter candidate I Known production and annihilation mechanisms I Dimensionful unitarity : upper bounds on the mass ratios I Contracted spectrum I Dimensionless unitarity : upper bounds on dimensionless couplings I Tension with Relic Abundance constraints for heavy Dark Matter Unitarity and Relic Abundance set an upper bound on the masses of the new particles! I Unitarity constraints on the Higgs portal ∆ 10 TeV bounds Walker [arXiv:1310.1083] 12 / 40

  13. Finding New Energy Scales Application to the NMSSM Overview Unitarity bounds Relic density constraints Parameter scan and results 13 / 40

  14. Finding New Energy Scales Application to the NMSSM Overview Unitarity bounds Relic density constraints Parameter scan and results 14 / 40

  15. The NMSSM Higgs sector I Focus on NMSSM Higgs Sector H d + 1 W NMSSM = ≠ λ ˆ S ˆ H u . ˆ 3 κ ˆ S 3 H d H † V soft = m 2 d H d + m 2 H u H † u H u + m 2 S S † S λ A λ SH u H d ≠ 1 3 4 3 κ A κ S 3 + h . c . ≠ I Winos, Binos and Sfermions decoupled I Six parameters after EWSB λ , κ , tan β , µ, A λ , A κ 15 / 40

  16. NMSSM spectrum: Decoupling limit I One light Higgs, m h = 125 GeV I Heavy Higgs masses depending on µ 2 , A λ µ and A κ µ I Higgsino/Singlino Dark Matter m DM ≥ µ I DM annihilation governed by λ and/or κ 16 / 40

  17. Upper Bounds on the NMSSM I Tree-level study Z cos 2 2 β + λ v 2 sin 2 2 β Ø ( 125 GeV ) 2 m 2 λ Ø 0 . 7 I Using unitarity + Relic abundance measurements I We want to obtain ∆ Upper bounds on λ , κ ∆ Upper bounds on A λ , κ /µ ∆ Upper bound on µ 17 / 40

  18. Finding New Energy Scales Application to the NMSSM Overview Unitarity bounds Unitarity and Perturbativity Unitarity and the NMSSM parameters Relic density constraints Parameter scan and results 18 / 40

  19. NMSSM and Unitarity S S S S µ + κ 2 A 2 λ κ 2 S κ µ + ∝ g s − m 2 S S S S S I Lee-Quigg-Thacker type bounds on λ and κ If s ≥ 5 m 2 S A κ 2 A κ B A Ã κ 2 + O µ I All heavy particle masses are of order µ or less 19 / 40

  20. Perturbative Unitarity Constrains a given scattering matrix S = 1 + iT Optical theorem S † S = I ∆ 1 2 ( T ≠ T † ) = | T 2 ii | Use Partial Wave Decomposition ⁄ 1 ij = λ 1 / 4 λ 1 / 4 ˜ T J i f T ij P J ( cos θ ) d cos θ 32 π s − 1 We find T ii | < 1 T ii | 2 ∆ | Re ˜ Im ˜ T ii = | ˜ 2 20 / 40

  21. Perturbative Unitarity: a Geometric view d y =Im ˜ T J ii Argand diagram Exact Matrix Element 1 / 2 ( cle (called A r x =Re ˜ T J SM 1 SM 1 ii - or the Born ap 2 2 Schuessler and Zeppenfeld [arXiv:07105175, Schuessler’s thesis (2005)] 21 / 40

  22. Perturbative Unitarity: a Geometric view d y =Im ˜ T J ii Argand diagram nth-loop 1 / 2 ( cle (called A r x =Re ˜ T J Tree Level ii or the Born ap Schuessler and Zeppenfeld [arXiv:07105175, Schuessler’s thesis (2005)] 22 / 40

  23. Perturbativity breakdown d y =Im ˜ T J 2 | | ii − Argand diagram TL a � = d min | x TL | | − EW 1 / 2 ( d min ? } cle (called A r x =Re ˜ T J min x TL ii or the Born ap Schuessler and Zeppenfeld [arXiv:07105175, Schuessler’s thesis (2005)] 23 / 40

  24. Perturbativity breakdown I Conservative estimate of loop corrections 0.5 41% 0.4 0.3 a' 1/2 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 Tree T ii Schuessler and Zeppenfeld [arXiv:07105175, Schuessler thesis (2005)] 24 / 40

  25. Large s study: Quartic Couplings Constraints on dimensionless couplings 3.0 For large s , only quartic 2.5 couplings remain 2.0 1.5 T ii | < 1 Κ lim s →∞ | Re ˜ 2 1.0 0.5 λ , κ . 3 0.0 0 1 2 3 4 Λ 25 / 40

  26. Unitarity and SUSY breaking scales �� I m H , m A , m χ depend on A λ , , µ, A λ , A κ A κ , µ I Trilinear couplings ∆ vanish at high energy I Energy-dependent scattering amplitudes electroweak ∆ Scan over s scale 26 / 40

  27. General Optimal s 2.5 � b � 2.0 � Max Eigenvalue � 1.5 1.0 0.5 0.0 0 20 40 60 80 100 120 s � TeV � 5 m h 27 / 40

  28. Unitarity: Summary I Upper bounds on λ and κ λ , κ . 3 I Optimal bounds for s ≥ 5 m 2 H I Upper bounds on ratios of scales A λ µ and A κ µ ≥ O ( 1 ) I µ is the only scale left unconstrained ∆ Need to constrain the DM mass! 28 / 40

  29. Finding New Energy Scales Application to the NMSSM Overview Unitarity bounds Relic density constraints Parameter scan and results 29 / 40

  30. Relic density Relic density anchors the heavy spectrum h , H , A , SM ˜ χ ∝ λ , κ h , H 12 , A 12 ˜ χ h , H , A , SM I λ and κ increase with the DM mass I Maximal mass when λ or κ hits the unitarity bound 30 / 40

  31. Loopholes in Fine-Tuned Regions I Higgs funnels: s-channel resonances when | 2 m χ ≠ m H i | R = min i . 0 . 1 m H i I t-channel resonances: not in our model but can exist if m χ 0 ≥ m W + m χ ± I Sommerfeld enhanced regions: for low Higgsino-Chargino splitting H 0 ˜ H ± ˜ − − S S . . . . . . W ± W ± H 0 H 0 H 0 ˜ H ± ˜ 31 / 40

  32. Finding New Energy Scales Application to the NMSSM Parameter scan and results 32 / 40

  33. Finding upper bounds: procedure I Uniform scan over 6 parameters with the 125 GeV Higgs mass constraint λ , | κ | < 4, | A i | , | µ | < 40 TeV I Apply vacuum constraints Kanehata, Kobayashi, Konishi, Seto, Shimomura [arXiv:1103.5109] I Unitarity: allow for at most 40% loop corrections to tree-level amplitudes | Re T ij | Æ 1 2 I Compute relic density using MicrOmegas and NMSSMTools Ω h 2 < 0 . 1199 + 0 . 0081 (Planck measurement) 33 / 40

  34. Results: Dark Matter | 2 m DM ≠ m H i | I Fine Tuning Factor R = min i m H i 34 / 40

  35. Results: Higgs sector 35 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend