general relativity
play

General Relativity Spacetime tells matter how to move; matter tells - PowerPoint PPT Presentation

General Relativity Spacetime tells matter how to move; matter tells spacetime how to curve. John Wheeler 3 Gravitational Waves Strain on spacetime. Generated by time-varying quadrupole moment. Propagate at speed of light. Unimpeded


  1. General Relativity “Spacetime tells matter how to move; matter tells spacetime how to curve.” — John Wheeler

  2. 3

  3. Gravitational Waves Strain on spacetime. Generated by time-varying quadrupole moment. Propagate at speed of light. Unimpeded by matter. 4

  4. 0.000000000000000000001 credit: wikipedia

  5. LIGO-Virgo Network Hanford, WA Pisa, Italy Livingston, LA 6

  6. 7

  7. 8

  8. O1 BBH: Abbott et al. (2016) PRX 6, 041015 GW170104: Abbott et al. (2017) PRL 118, 221101 GW170608: Abbott et al. (2017) ApJL 851 L35 GW170814: Abbot et al. (2017) PRL 119, 141101 9

  9. Isolated (“Field”) Formation Belczynski et al. (2016) 11

  10. Dynamical Formation Rodriguez et al. (2016) credit: Carl Rodriguez 12

  11. Black Hole Spins prior 13

  12. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW150914 BH spin not extremal 13

  13. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 LVT151012 13

  14. Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW151226 At least one spinning BH 13

  15. <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> <latexit sha1_base64="EHdcnmso4rxYQenBhRrmLNfThYw=">ACPnicdVBa9RAFJ60tq5b26Z69DK4FAQhJCF0t4dC0YvHFdx2YRPCZPZld+hMEmZehCXkl3nxN3jz2IsHRbx6dJKuYEUfPjm+97Hm/dlRQGf+zs7P7YG/4eDR8ODx4dGxe/LkypS15jDjpSz1PGMGpChghgIlzCsNTGUSrOb151+/R60EWXxDjcVJIqtCpELztBSqTuL+VqksWK41qBPG/pBY1zXij0oAy2zEvTRPjGtC+WvqSqjS0QnhPCNu2N/Rqm7oj3zsfn4dnEe1AFEV+ByaRP5nQwP7GpFtTVP3U7wsea2gQC6ZMYvArzBpmEbBJbTDuDZQMX7DVrCwsGAKTNL057f01DJLmpfadoG0Z/90NEwZs1GZnezuNH9rHfkvbVFjPkaUVQ1QsHvFuW1pFjSLku6FBo4yo0FjGth/0r5mtns0CY+tCH8vpT+H1yFXuB7wdtodPlqG8eAPCPyQsSkDG5JG/IlMwIJx/ILflKvjkfnS/Od+fH3eiOs/U8JfK+fkLpTSuKw=</latexit> Black Hole Spins Abbott et al. (2016): PRX 6 , 041015 GW151226 At least one χ e ff = m 1 a 1 cos θ 1 + m 2 a 2 cos θ 2 spinning BH m 1 + m 2 13

  16. O1 + (some of) O2 Farr et al (2017): arXiv:1709.07896 15

  17. Simple Population Model 16

  18. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  19. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 Dynamical 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  20. Current Results fraction of informative events w/ χ e ff > 0 ( ρ ) 1 . 75 marginal posterior density fraction of informative events ( α ) 1 . 50 1 . 25 1 . 00 0 . 75 0 . 50 0 . 25 Dynamical Field 0 . 00 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 17

  21. Spin Magnitudes Aligned Isotropic 2 . 5 3 . 0 3 . 0 2 . 5 2 . 0 2 . 5 2 . 0 2 . 0 1 . 5 p ( a ) p ( a ) p ( a ) 1 . 5 1 . 5 1 . 0 1 . 0 1 . 0 0 . 5 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 a a a 18

  22. 19 19

  23. GW170817 20

  24. Abbott et al. (2017) arXiv:1710.05833 21

  25. Abbott et al. (2017) arXiv:1710.05833 21

  26. 500 Fermi/GBM t-t c SALT LIGO - Virgo Talking Picture 400 (days) ESO-NTT counts/s (arb. scale) frequency (Hz) 1.2 300 SOAR normalized F λ ESO-VLT 200 7000 o 1.4 INTEGRAL/SPI-ACS 100 2.4 4000 o 50 -12 -10 -8 -6 -4 -2 0 2 4 6 400 600 1000 2000 wavelength (nm) t-t c (s) GW LIGO, Virgo γ -ray Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL UV Swift, HST Optical Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARRS1, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA IR REM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST Radio ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg -100 -50 0 50 10 -2 10 -1 10 0 10 1 t-t c (s) t-t c (days) 1M2H Swope DLT40 VISTA Chandra 10.86h i 11.08h h 11.24h YJK s 9d X-ray MASTER DECam Las Cumbres J VLA Abbott et al. (2017) arXiv:1710.05833 22 11.31h 11.40h 11.57h 16.4d W iz w Radio

  27. Masses Abbott et al. (2018) arXiv:1805.11579 23

  28. Known NSs Opel and Freire (2016) 24

  29. 500 Fermi/GBM t-t c SALT LIGO - Virgo Talking Picture 400 (days) ESO-NTT counts/s (arb. scale) frequency (Hz) 1.2 300 SOAR normalized F λ ESO-VLT 200 7000 o 1.4 INTEGRAL/SPI-ACS 100 2.4 4000 o 50 -12 -10 -8 -6 -4 -2 0 2 4 6 400 600 1000 2000 wavelength (nm) t-t c (s) GW LIGO, Virgo γ -ray Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL UV Swift, HST Optical Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARRS1, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA IR REM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST Radio ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg -100 -50 0 50 10 -2 10 -1 10 0 10 1 t-t c (s) t-t c (days) 1M2H Swope DLT40 VISTA Chandra 10.86h i 11.08h h 11.24h YJK s 9d X-ray MASTER DECam Las Cumbres J VLA Abbott et al. (2017) arXiv:1710.05833 25 11.31h 11.40h 11.57h 16.4d W iz w Radio

  30. EM Counterparts to BNS credit: Berger (2014) 26

  31. GRB and afterglow credit: NASA's Goddard Space Flight Center 27

  32. GRB and afterglow credit: Lijnis Nelemans credit: NASA's Goddard Space Flight Center 27

  33. Kilonova 28

  34. 29

  35. Cowperthwaite et al. (2017) 30 credit:Open Kilonova Catalog

  36. 31

  37. 32

  38. Standard Siren Abbott et al. (2017) arXiv:1710.05835 33

  39. Speed of Gravity temporal offset: 1.74 ± 0.05 s − 3 × 10 − 15 ≤ ∆ v ≥ +7 × 10 − 16 ν EM Abbott et al. (2017) arXiv:1710.05834 34

  40. Conclusions GW170817 was most likely a BNS merger Successful observations of kilonova and afterglow emission Novel measurement of Hubble constant Best measurements of the speed of gravity More to come: O3 : 1 event per week Design : 1 event per day 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend