higgs self coupling and electroweak baryogenesis
play

Higgs Self-Coupling and Electroweak Baryogenesis Eibun - PowerPoint PPT Presentation

Higgs Self-Coupling and Electroweak Baryogenesis Eibun Senaha(GUAS, KEK) Nov. 9-12, 2004 , 7th ACFA Workshop @NTU in collaboration with Shinya Kanemura(Osaka U) Yasuhiro Okada(GUAS, KEK) 1 Outline 1. Introduction -Connection between


  1. Higgs Self-Coupling and Electroweak Baryogenesis Eibun Senaha(GUAS, KEK) Nov. 9-12, 2004 , 7th ACFA Workshop @NTU in collaboration with Shinya Kanemura(Osaka U) Yasuhiro Okada(GUAS, KEK) 1

  2. Outline § 1. Introduction -Connection between collider physics and cosmology § 2. Conditions of baryogenesis -Electroweak phase transition in the THDM § 3. Radiative corrections to hhh coupling constant -Collider signal of electroweak baryogenesis? § 4. Summary 2

  3. Introduction • Higgs physics at colliders -Discovery of the Higgs boson(s) (@Tevatron, LHC) � gauge bosons -Measurements of the Higgs couplings with ( mass generation ) fermions O (1)% accuracy (@ILC) ACFA Rep. TESLA TDR -Measurements of the Higgs self-couplings (reconstruction of the Higgs potential) O (10 − 20)% accuracy (@ILC) ACFA Higgs WG, Battaglia et al • Connection between collider physics and cosmology (1). B-L-gen. above EW phase transition (Leptogenesis, etc) -Baryon Asymmery of the Universe (2). B-gen. during EW phase transition (EW baryogenesis) -dark matter ✄ Since the EW baryogenesis depends on the dynamics of the phase transition, we can naively expect that a collider signal of it can appear in the Higgs self-coupling. ✄ We investigate the region where the EW baryogenesis is possible in the THDM, and calculate the deviation of the self-coupling constant from SM prediction in such a region. 3

  4. Conditions of Baryogenesis Evidence of the BAU n B s ≡ n b − n ¯ b ≃ (8 . 7 +0 . 4 − 0 . 3 ) × 10 − 11 s • 3 requirements for generation of the BAU (Sakharov conditions) 1. baryon number violation 2. C and CP violation 3. out of equilibrium 2 scenarios (1) B-L-generation above EW phase transition. (Leptogenesis, etc) (2) B-generation at the electroweak phase transition. (Electroweak baryogenesis) -based on a testable model 4

  5. Baryogenesis in the electroweak theory ✬ ✩ • baryon number violation sphaleron process • C violation chiral interation • CP violation KM-phase or other sources in the extension of the SM • out of equilibrium 1st order phase transition with expanding bubble walls ✫ ✪ In principle, SM fulfills the Sakharov conditions, BUT • Phase transition is not 1st order for the current Higgs mass bound ( m h > 114 GeV) • KM-phase is too small to generate the sufficient baryon asymmetry = ⇒ Extension of the minimal Higgs sector THDM, MSSM, Next-to-MSSM, etc. ✄ THDM is a simple viable model not so constrained 5

  6. Two Higgs Doublet Model (THDM) Higgs potential 1 | Φ 1 | 2 + m 2 2 | Φ 2 | 2 − ( m 2 3 Φ † m 2 V THDM = 1 Φ 2 + h.c. ) + λ 1 2 | Φ 1 | 4 + λ 2 2 | Φ 2 | 4 + λ 3 | Φ 1 | 2 | Φ 2 | 2 + λ 4 | Φ † 1 Φ 2 | 2 � λ 5 � 1 Φ 2 ) 2 + h.c. 2 (Φ † + , � � φ + i ( x ) � � Φ i ( x ) = . ( i = 1 , 2) 1 v i + h i ( x ) + ia i ( x ) √ 2 discrete sym.( Φ 1 → Φ 1 , Φ 2 → − Φ 2 ) → FCNC suppression Yukawa interaction q L f ( d ) q L f ( u ) Φ 1 u R + ¯ ˜ l L f ( e ) L I Type I : Yukawa = ¯ 1 Φ 1 d R + ¯ 1 Φ 1 e R + h.c. , 1 q L f ( d ) q L f ( u ) Φ 2 u R + ¯ ˜ l L f ( e ) L II Type II : Yukawa = ¯ 1 Φ 1 d R + ¯ 1 Φ 1 e R + h.c. 2 6

  7. To avoid complication, we consider [Cline et al PRD54 ’96] � � m 1 = m 2 ≡ m, λ 1 = λ 2 = λ, sin( β − α ) = tan β = 1 � � � Φ 1 � = � Φ 2 � = 1 0 • Higgs VEVs: ϕ 2 • Tree-level potential V tree ( ϕ ) = − µ 2 2 ϕ 2 + λ eff λ eff = 1 µ 2 = m 2 4 ϕ 4 , 3 − m 2 , 4( λ + λ 3 + λ 4 + λ 5 ) � �� � ≡ λ 345 ✄ Mass formulae of the Higgs bosons h = 1 m 2 2( λ + λ 345 ) v 2 , 2 ( λ − λ 345 ) v 2 + M 2 ,  m 2 H = 1    � c i λ i v 2 and M 2 . A = − λ 5 v 2 + M 2 , m 2 Two origins of the masses :   i 2 ( λ 4 + λ 5 ) v 2 + M 2  m 2 H ± = − 1 m 2 where M 2 = 3 (soft breaking scale of the discrete symmetry) sin β cos β 7

  8. 1-loop effective potential • Zero temperature � � m 4 log m 2 i ( ϕ ) i ( ϕ ) − 3 V 1 ( ϕ ) = n i 64 π 2 Q 2 2 ( n W = 6 , n Z = 3 , n t = − 12 , n h = n H = n A = 1 , n H ± = 2) • Finite temperature V 1 ( ϕ, T ) = T 4 � � � n i I B ( a 2 ) + n t I F ( a ) 2 π 2 i = bosons dx x 2 log(1 ∓ e − √ � ∞ � � a ( ϕ ) = m ( ϕ ) where x 2 + a 2 ) , I B,F ( a 2 ) = T 0 ( a 2 � 1) ✄ High temperature expansion � � − π 4 45 + π 2 6( a 2 ) 3 / 2 − a 4 log a 2 12 a 2 − π − 3 I B ( a 2 ) + O ( a 6 ) , = 32 α B 2 � � 7 π 4 360 − π 2 24 a 2 − a 4 log a 2 − 3 � � I F ( a 2 ) + O ( a 6 ) , = log α F ( B ) = 2 log(4) π − 2 γ E 32 α F 2 ϕ 3 -term comes from the “bosonic”loop 8

  9. Finite temperature Higgs potential Φ ( v ) ϕ 2 For m 2 Φ ( v ) � M 2 , m 2 m 2 Φ ( ϕ ) ≃ m 2 (Φ = H, A, H ± ) h ( v ) v 2 , 0 ) ϕ 2 − ETϕ 3 + λ T V eff ≃ D ( T 2 − T 2 4 ϕ 4 where 1 12 πv 3 (6 m 3 W + 3 m 3 m 3 H + m 3 A + 2 m 3 E = Z + ) H ± � �� � additional contributions Veff ϕ c = 2 ET c At T c , degenerate minima: λ T c • The magnitude of E is relevent for the strongly T>Tc 1st order phase transition T=Tc 0 ϕ c T<Tc > • Strongly 1st order phase transition: ∼ 1 0 50 100 150 200 250 300 T c ϕ (GeV) ⇒ Not wash out the baryon density after EW phase transition ✄ CP violation at the bubble wall ⇒ Asymmetry of the charge flow 9

  10. Contour plot of ϕ c /T c in the m Φ - M plane sin 2 ( α − β ) = tan β = 1 , m h = 120 GeV , m Φ ≡ m A = m H = m H ± Contour plot of ϕ c/Tc in the m Φ -M plane 450 400 350 phase transition is strongly 1st order m Φ (GeV) 300 250 200 ϕ c/Tc = 1 150 sin( α - β ) = -1, tan β = 1 100 m h = 120 GeV m Φ = m H = m A = m H + - 50 0 0 20 40 60 80 100 120 140 M (GeV) • For m 2 Φ � M 2 , m 2 h , Strongly 1st order phase transition is possible due to the loop effect of the heavy Higgs bosons ( non-decoupling effect ). ( ϕ 3 -term is effectively large) • What the magnitude of the λ hhh coupling at T=0 in such a region? 10

  11. Radiative corrections to λ hhh [S. Kanemura, S. Kiyoura, Y. Okada, E.S., C.-P. Yuan PL ’03] • hhh h h h φ f = h h + h φ f + counter terms φ f h h h ( φ = h, H, A, H ± , f = t, b ) • For sin( β − α ) = 1 , − 3 m 2 h λ tree = v , ( same form as in the SM ) hhh � � � 3 � − 3 m 2 m 4 1 − M 2 c h Φ (Φ = H, A, H ± ) λ hhh ∼ 1 + m 2 m 2 12 π 2 h v 2 v Φ ( c = 1 for neutral Higgs, c = 2 for charged Higgs ) h , the loop effect of the heavy Higgs bosons is enhanced by m 4 For m 2 Φ � M 2 , m 2 Φ , which does not decouple in the large mass limit. ( non-decoupling effect ) 11

  12. Contour plots of ∆ λ hhh /λ hhh and ϕ c /T c in the m Φ - M plane sin 2 ( α − β ) = tan β = 1 , m h = 120 GeV , m Φ ≡ m A = m H = m H ± Contour plot of ∆λ hhh / λ hhh and ϕ c /T c in the m Φ -M plane Contour plot of ∆λ hhh / λ hhh and ϕ c /T c in the m Φ -M plane 450 450 100 % 400 400 350 350 50 % m Φ (GeV) m Φ (GeV) 300 300 30 % 20 % 250 250 10 % 200 200 ϕ c / T c = 1 150 150 ∆λ hhh / λ hhh = 5% 100 100 sin( α - β ) = -1, tan β = 1 m h = 120 GeV 50 m Φ = m H = m A = m H + - 0 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 M (GeV) M (GeV) For m 2 Φ � M 2 , m 2 h , • Phase transition is strongly 1st order, AND ( ∆ λ hhh /λ hhh > • Deviation of hhh coupling from SM value becomes large. ∼ 10% ) 12

  13. Summary We have investigated the region where the ✓ ✏ electroweak phase transition is strongly 1st EW baryogenesis order, and calculate the radiative correction ✒ ✑ to the triple Higgs self-coupling constant in ⇓ the THDM. ✤ ✜ Strongly 1st order V eff ( ϕ, T ) For m 2 Φ � M 2 , m 2 phase transition h ✣ ✢ • Phase transition is strongly 1st order. ⇓ ✤ ✜ • Deviation of hhh coupling from SM value Large loop correction ( ∆ λ hhh /λ hhh > becomes large. ∼ 10% ) V eff ( ϕ, 0) to λ hhh ✣ ✢ due to the non-decoupling effect ⇓ of the heavy Higgs bosons ✎ ☞ Measurement of λ hhh @ILC ✍ ✌ Such deviation can be testable at a Linear Collider. 13

  14. Definitions of the mass eigenstates � � � � � � � � − π h 1 cos α − sin α H = , 2 ≤ α ≤ 0 , h 2 sin α cos α h � � � � � � � � G 0 0 < β < π a 1 cos β − sin β = , a 2 sin β cos β A 2 � � � � � � φ ± G ± cos β − sin β 1 = φ ± H ± sin β cos β 2 14

  15. Renormalized h and H � � � � � � � � H B cos α B sin α B h 1 B h 1 B = = R ( − δα ) R ( − α R ) h B − sin α B cos α B h 2 B h 2 B � �� � ≡ R ( − α B ) � � h 1 R R ( − δα ) R ( − α R ) ˜ = Z h 2 R � � � � h 1 R Z ≡ R ( − α R ) ˜ = R ( − δα ) ZR ( − α R ) ZR ( α R ) h 2 R � � H R = R ( − δα ) Z h R � � � � � � Z 1 / 2 1 δα δA H R H ≡ Z 1 / 2 − δα 1 h R δA h � � � � 1 + 1 2 δZ H δA + δα H R = , 1 + 1 h R δA − δα 2 δZ h 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend