trapped atom light interaction
play

Trapped Atom-Light Interaction 2-level atom trapped in harmonic - PowerPoint PPT Presentation

INTERACTING IONS: BLACKBOARD Trapped Atom-Light Interaction 2-level atom trapped in harmonic potential |e> " ! k ! |g> H ext = ! a a + 1 H int = 1 2 ! z 2 Interaction with near


  1. INTERACTING IONS: BLACKBOARD

  2. Trapped Atom-Light Interaction 2-level atom trapped in harmonic potential |e> ⊗ " ! ω k ! |g> ⎛ ⎞ H ext = ! ν a † a + 1 H int = 1 2 ! ωσ z ⎜ ⎟ 2 ⎝ ⎠ Interaction with near resonant lin.pol. travelling wave; lowest order in multipole expansion Rabi frequency Ω R ≡ d eg ⋅ F 0 ! H L = ! Ω R σ x cos( kz − ω L t + φ )

  3. Trapped Atom-Light Interaction 2-level atom trapped in harmonic potential |e> ⊗ " ! ω k ! |g> ⎛ ⎞ H ext = ! ν a † a + 1 H int = 1 2 ! ωσ z ⎜ ⎟ ⎝ 2 ⎠ Interaction with near resonant lin.pol. travelling wave; lowest order in multipole expansion H L = ! Ω R σ x cos( kz − ω L t + φ ) Rabi frequency Ω R ≡ d eg ⋅ F 0 ! = 1 ! Ω R ( σ + + σ − )( e i ( kz − ω L t + φ ) + e − i ( kz − ω L t + φ ) ) 2 ! ( a † + a ) = Δ z ( a † + a ) With position operator ˆ z = 2 m ν and Lamb-Dicke parameter η ≡ Δ z k = 2 π Δ z = ( ! k ) 2 / ! ν λ 2 m ⇒ H L = 1 ! Ω R ( σ + + σ − )( e i η ( a + + a ) − ω L t + φ ⎡ ⎤ ⎥ + H . c .) ⎢ ⎣ ⎦ 2

  4. Trapped Atom-Light Interaction i − i  Unitary transformation  H 0 t H L e  H 0 t H L = e with H o = H ext + H int =  ν ( a † a + 1 ) + 1  ω σ z 2 2 H L = 1 ⎡ ⎤ ⎡ ⎤ ⎥ + H . c . i η a † ( t ) + a ( t ) ⎡ ⎤ ⇒  i ( ω − ω L ) t + φ ⎢  Ω R e ⎦ σ + e ⎣ ⎣ ⎦ ⎢ ⎥ 2 ⎣ ⎦ where a † ( t ) = a † e i ν t and a ( t ) = ae − i ν t Expansion in η : H L = 1 ⎦ σ + 1 + i η ( a + e i ν t + ae − i ν t ) + .... ⎡ ⎤ ⎡ ⎤  i ( ω − ω L ) t + φ ⎡ ⎤  Ω R e ⎦ + H . c ⎣ ⎣ ⎢ ⎥ ⎣ ⎦ 2 Lowest order in η : H L = 1 ⎦ σ + + i η e i ( ω − ω L + ν ) t σ + a + + e ⎡ ⎤ ⎡ ⎤ ⎡ ⎤  i ( ω − ω L ) t + φ i ( ω − ω L − ν ) t σ + a  Ω R e ⎦ + H . c ⎣ ⎢ ⎥ ⎣ ⎣ ⎦ 2 ω L = ω − ν , φ = 0, "red sideband" ω L = ω , "Carrier" H L = 1 ( ) H L = 1 ⇒  ⎡ ⎤  Ω R σ + e i φ + σ − e − i φ  Ω R η σ + a + σ − a + ⇒  ⎣ ⎦ 2 2

  5. Single Qubit Gate |1> ω L = ω ( ) H L = 1  Ω R σ + e i φ + σ − e − i φ ⇒  |0> 2 ⎛ ⎞ Time evolution operator (interaction picture) U ( t ) = exp − i  H L t ⎜ ⎟ ⎝ ⎠  ϑ ϑ ⎛ ⎞ − cos isin ϑ 2 2 ⎜ ⎟ With φ = 0: ϑ = − σ = U( ) exp( i ) where ϑ ≡ Ω t x ⎜ ϑ ϑ ⎟ 2 − isin cos ⎝ ⎠ 2 2

  6. Trapped Atom-Light Interaction ω L = ω , φ = 0, "Carrier" H L = 1 ⇒   Ω R σ x 2 ω L = ω + ν , ( φ =0) "blue sideband" ω L = ω − ν , ( φ =0) "red sideband" H L = 1 H L = 1 " Ω R η σ + a † + σ − a ⇒ ! ⎡ ⎤ ⇒ ! ⎡ ⎤ " Ω R η σ + a + σ − a + ⎣ ⎦ ⎣ ⎦ 2 2 ω − ν ω ω + ν ω L

  7. Two-Qubit Gate Electromagnetic radiation used to · couple internal and external degrees of freedom η ≡ ! k = Δ z 2 π 2p 0 λ |1> |0>

  8. Coupling internal and motional states Semi-classical illustration. QM calculation p p 0 |1>  k  k p 0 ⊗ zz 0 |0> ( ) ⎡ ⎤ H I ∝ σ + exp i η a + a + ⎦ + H.c. ⎣

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend