electroweak scale neutrinos and higgses
play

Electroweak scale neutrinos and Higgses Alfredo Aranda Facultad de - PowerPoint PPT Presentation

Electroweak scale neutrinos and Higgses Alfredo Aranda Facultad de Ciencias - Universidad de Colima Dual CP Institute of High Energy Physics XIII Mexican School of Particles and Fields - 2008 Alfredo Aranda (Colima - DCPIHEP) EW scale


  1. Electroweak scale neutrinos and Higgses Alfredo Aranda Facultad de Ciencias - Universidad de Colima Dual CP Institute of High Energy Physics XIII Mexican School of Particles and Fields - 2008 Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 1 / 33

  2. Outline Standard Model 1 Particle Content Gauge Structure The missing ingredient Beyond the Standard Model 2 Experimental Evidence Pseudo-experimental evidence Theoretical evidence Going beyond Minimal model 3 Electroweak scale additions The Model Model with Higgs triplets 4 Additional field content Virtues Conclusions 5 Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 2 / 33

  3. Standard Model Particle Content Particle Content Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 3 / 33

  4. Standard Model Gauge Structure Gauge Structure. interactions 1 SU(3) C × SU(2) W × U(1) Y 2 8 gluon fields for the Strong interaction. 3 3 gauge fields for the Weak interaction. 4 1 gauge field for the Electromagnetic interaction. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 4 / 33

  5. Standard Model Gauge Structure Gauge Structure. interactions 1 SU(3) C × SU(2) W × U(1) Y 2 8 gluon fields for the Strong interaction. 3 3 gauge fields for the Weak interaction. 4 1 gauge field for the Electromagnetic interaction. � u � c � t � ν e � ν µ � ν τ � � � � � � e − d s b µ − τ − L L L L L L e R µ R τ R u R d R c R s R t R b R Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 4 / 33

  6. Standard Model The missing ingredient Higgs - The missing ingredient. Massive force carriers! 1 Principle of Gauge Symmetry → Massless Gauge bosons. 2 Massive Gauge bosons → inconsistent theory! 3 Solution: Spontaneous Symmetry Breaking - Higgs Mechanism Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 5 / 33

  7. Standard Model The missing ingredient Higgs - The missing ingredient. Massive force carriers! 1 Principle of Gauge Symmetry → Massless Gauge bosons. 2 Massive Gauge bosons → inconsistent theory! 3 Solution: Spontaneous Symmetry Breaking - Higgs Mechanism SM predicts the existence of a new particle, the Higgs. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 5 / 33

  8. Standard Model The missing ingredient Higgs - The missing ingredient. Massive force carriers! 1 Principle of Gauge Symmetry → Massless Gauge bosons. 2 Massive Gauge bosons → inconsistent theory! 3 Solution: Spontaneous Symmetry Breaking - Higgs Mechanism Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 5 / 33

  9. Beyond the Standard Model Experimental Evidence Why go beyond the Standard Model? Experimental Evidence 1 Neutrinos are MASSIVE. 2 Baryon Asymmetry - A mystery. 3 Dark Matter 4 Dark Energy Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 6 / 33

  10. Beyond the Standard Model Experimental Evidence Why go beyond the Standard Model? Experimental Evidence 1 Neutrinos are MASSIVE. 2 Baryon Asymmetry - A mystery. 3 Dark Matter 4 Dark Energy Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 6 / 33

  11. Beyond the Standard Model Experimental Evidence Why go beyond the Standard Model? Experimental Evidence 1 Spectrum of fermion masses. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 7 / 33

  12. Beyond the Standard Model Experimental Evidence Why go beyond the Standard Model? Experimental Evidence 1 Spectrum of fermion masses. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 7 / 33

  13. Beyond the Standard Model Pseudo-experimental evidence Why go beyond the Standard Model? Pseudo-experimental Evidence 1 Gauge coupling unification. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 8 / 33

  14. Beyond the Standard Model Pseudo-experimental evidence Why go beyond the Standard Model? Pseudo-experimental Evidence 1 Gauge coupling unification. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 8 / 33

  15. Beyond the Standard Model Pseudo-experimental evidence Why go beyond the Standard Model? Pseudo-experimental Evidence 1 Gauge Hierarchy problem. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 9 / 33

  16. Beyond the Standard Model Pseudo-experimental evidence Why go beyond the Standard Model? Pseudo-experimental Evidence 1 Gauge Hierarchy problem. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 9 / 33

  17. Beyond the Standard Model Theoretical evidence Why go beyond the Standard Model? Theoretical Evidence 1 GRAVITY. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 10 / 33

  18. Beyond the Standard Model Going beyond How do we go beyond the Standard Model? Approaches 1 Grand Unified Theories. 2 Supersymmetry. 3 Extra dimensions. 4 � ♦ � Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 11 / 33

  19. Beyond the Standard Model Going beyond How do we go beyond the Standard Model? Approaches 1 Grand Unified Theories. 2 Supersymmetry. 3 Extra dimensions. 4 � ♦ � Paradigm: Something is happening at high (very high) energy scales. Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 11 / 33

  20. Minimal model Electroweak scale additions Minimalistic additions Proposal 1 Any addition to the Standard Model should NOT introduce higher energy scales a . 2 Effects of additions should be testable at future accelerators: LHC/ILC a A.A, Omar Blanno and J. Lorenzo Díaz-Cruz, Physics Letters B 660, 62-66 (2008) Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 12 / 33

  21. Minimal model Electroweak scale additions Right-handed neutrinos at the Electroweak scale The model SM particle content and gauge interactions. Existence of 3 RH neutrinos with a mass scale of EW size. Global U(1) L spontaneously (and/or explicitly) broken at the EW scale by a single complex scalar field. Higgs sector: SU(2) L doublet Higgs field Φ and a SM singlet complex scalar field η . Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 13 / 33

  22. Minimal model The Model Neutrino and scalar sector The Lagrangian L ν H = L ν y − V , with L α N Ri Φ − 1 N c L ν y = − y α i ¯ 2 Z ij η ¯ Ri N Rj + h . c . , D Φ † Φ + λ � 2 � S η ∗ η + λ ′ ( η ∗ η ) 2 V µ 2 Φ † Φ + µ 2 = 2 � � � � η Φ † Φ + h . c . Φ † Φ ( η ∗ η ) . + κ + λ m Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 14 / 33

  23. Minimal model The Model Breaking the symmetry � � and η = ρ + u + i σ 0 Φ = √ , (1) φ 0 + v √ 2 2 Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 15 / 33

  24. Minimal model The Model Breaking the symmetry � � and η = ρ + u + i σ 0 Φ = √ , (1) φ 0 + v √ 2 2 Scalar masses √ λ v 2 vu ( λ m − 2 r ) � � M 2 √ S = (2) 2 λ ′ u 2 + vu ( λ m − 2 r ) 2 rv 2 1 √ σ = rv 2 M 2 √ (3) 2 Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 15 / 33

  25. Minimal model The Model Physical states � � h � cos α φ 0 � � � − sin α H = = (4) H ρ sin α cos α Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 16 / 33

  26. Minimal model The Model Physical states � � h � cos α φ 0 � � � − sin α H = = (4) H ρ sin α cos α Lagrangian − y α i � � ν L α N Ri ( c α h − s α H ) + h . c . L ν y ⊃ √ ¯ 2 i � � N c Z ij ¯ Ri N Rj σ + h . c . − √ 2 2 � 1 � N c Z ij ¯ Ri N Rj ( s α h + c α H ) + h . c − √ . (5) 2 2 Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 16 / 33

  27. Minimal model The Model Neutrino masses Seesaw m D � � 0 m ν = (6) m D M M √ ( m D ) α i = y α i v / 2 Consider the third family (2 × 2 matrix) Assume m D << M M → m 1 = − m 2 D / M M and m 2 = M M Requiring m 1 ∼ O(eV) and m 2 ∼ ( 10 − 100 ) GeV leads to y τ i ≤ 10 − 6 (comparable to Yukawa coupling of the electron). Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 17 / 33

  28. Minimal model The Model Neutrino eigenstates ν τ = cos θ ν L 1 + sin θ ν R 2 N = − sin θ ν L 1 + cos θ ν R 2 m D / m 2 ≈ 10 − ( 5 − 6 ) . p with θ = Alfredo Aranda (Colima - DCPIHEP) EW scale neutrinos and Higgses XIII-EMPC: October 6, 2008 18 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend