the other higgses at resonance in the lee wick extension
play

THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE - PowerPoint PPT Presentation

THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE STANDARD MODEL ARXIV:1108.3765, JHEP10 (2011) 145 (IN COLLABORATION WITH ROMAN ZWICKY) Dr. Terrance Figy The University of Manchester Birmingham Particle Physics Seminars 29


  1. THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE STANDARD MODEL ARXIV:1108.3765, JHEP10 (2011) 145 (IN COLLABORATION WITH ROMAN ZWICKY) Dr. Terrance Figy The University of Manchester Birmingham Particle Physics Seminars 29 Feb 2012

  2. OUTLINE • The Lee-Wick Standard Model • Higgs boson pair production • Top quark pair production • Conclusions

  3. LEE-WICK STANDARD MODEL (LWSM) B.Grinstein, D.O’Connel, M.B.Wise (2007) Based on ideas by Lee and Wick (1969,1970 )

  4. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) (A) HD formalism: L hd = 1 1 φ ) 2 − 1 φ 2 − 1 φ∂ µ ˆ 2 M 2 ( ∂ 2 ˆ 2 m 2 ˆ 2 ∂ µ ˆ 3! g ˆ φ 3 , φ − Propagator: ˆ D ( p ) = i ( p 2 − p 4 /M 2 − m 2 ) − 1 2 poles: p 2 = m 2 , M 2 (B) AF formalism: ˆ φ = φ − ˜ φ L = 1 2 ∂ µ φ∂ µ φ − 1 φ + 1 φ 2 − 1 φ ) 2 − 1 φ∂ µ ˜ 2 M 2 ˜ 2 ∂ µ ˜ 2 m 2 ( φ − ˜ 3! g ( φ − ˜ φ ) 3 . Wrong sign kinetic and mass term M. The two formulations are equivalent. Use EoM.

  5. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) ˜ φ φ φ φ φ φ + i − i ˜ D ( p ) = ; D ( p ) = p 2 − m 2 p 2 − M 2 d 4 p d 4 p i i � � Σ (0) = ig p 2 − m 2 − ig (2 π ) 4 (2 π ) 4 p 2 − M 2 d 4 p i ( m 2 − M 2 ) � = ig (2 π ) 4 ( p 2 − m 2 )( p 2 − M 2 ) Quadratic divergence is cancelled leading to a logarithmic divergence.

  6. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) − i − i − i − i Σ ( p 2 ) � � φ ( p ) = p 2 − M 2 + p 2 − M 2 + . . . D ˜ p 2 − M 2 − i = p 2 − M 2 + Σ ( p 2 ) . � g 2 1 − 4 m 2 − i φ ( p ) = Γ = D ˜ p 2 − M 2 − iM Γ , M 2 . 32 π M A LW resonance has a probability of decaying in the interval . Γ dt − dt Is this a problem? Shall we debate this issue further or proceed?

  7. LWSM: SUMMARY • For each SM field add a higher derivative (HD) term. • Auxiliary fields (AF) can be introduced to cast the theory in terms of interactions with mass dimension no greater than 4. • The AFs are interpreted as LW partner states and have the wrong-sign propagator (aka Pauli-Villars regulators). • The LWSM solves the hierarchy problem: the extra minus sign in the loop diagrams come from the LW field propagators. No need for opposite spin statistics! • Unitarity is preserved, provided that the LW fields do no appear as asymptotic states in the S-matrix. • Causality is preserved at the the macroscopic level (where we live). However, there can be violations of causality at the microscopic level.

  8. References 1 - The Lee-Wick standard model - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 025012 . arXiv:0704.1845 [hep-ph] . CALT-68-2643, UCSD-PTH-07-04 2 - Negative Metric and the Unitarity of the S Matrix - Lee, T.D. et al. Nucl.Phys. B9 (1969) 209-243 3 - Finite Theory of Quantum Electrodynamics - Lee, T.D. et al. Phys.Rev. D2 (1970) 1033-1048 4 - Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model - Grinstein, Benjamin et al. Phys.Rev. D79 (2009) 105019 . arXiv:0805.2156 [hep- th] . CALT-68-2684, UCSD-PTH-08-03 5 - A non-analytic S matrix - Cutkosky, R.E. et al. Nucl.Phys. B12 (1969) 281-300 6 - Vertex Displacements for Acausal Particles: Testing the Lee-Wick Standard Model at the LHC - Alvarez, Ezequiel et al. JHEP 0910 (2009) 023 . arXiv:0908.2446 [hep-ph] . UDEM-GPP-TH-09-183, IFIBA-TH-09-001 7 - Lee-wick Indefinite Metric Quantization: A Functional Integral Approach - Boulware, David G. et al. Nucl.Phys. B233 (1984) 1 . DOE/ER/40048-12 P3 8 - Non-perturbative quantization of phantom and ghost theories: Relating definite and indefinite representations - van Tonder, Andre Int.J.Mod.Phys. A22 (2007) 2563-2608 . hep-th/0610185 9 - Unitarity, Lorentz invariance and causality in Lee-Wick theories: An Asymptotically safe completion of QED - van Tonder, Andre . arXiv:0810.1928 [hep-th] 10 - Lee-Wick Theories at High Temperature - Fornal, Bartosz et al. Phys.Lett. B674 (2009) 330-335 . arXiv:0902.1585 [hep-th] . CALT-68-2720, UCSD-PTH-09-02 11 - Massive vector scattering in Lee-Wick gauge theory - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 065010 . arXiv:0710.5528 [hep-ph] . CALT-68-2662, UCSD- PTH-07-10 12 - Neutrino masses in the Lee-Wick standard model - Espinosa, Jose Ramon et al. Phys.Rev. D77 (2008) 085002 . arXiv:0705.1188 [hep-ph] . CALT-68-2647, IFT- UAM-CSIC-07-21, UCSD-PTH-07-05 13 - One-Loop Renormalization of Lee-Wick Gauge Theory - Grinstein, Benjamin et al. Phys.Rev. D78 (2008) 105005 . arXiv:0801.4034 [hep-ph] . UCSD-PTH-07-11 14 - Ultraviolet Properties of the Higgs Sector in the Lee-Wick Standard Model - Espinosa, Jose R. et al. Phys.Rev. D83 (2011) 075019 . arXiv:1101.5538 [hep-ph] 15 - A Higher-Derivative Lee-Wick Standard Model - Carone, Christopher D. et al. JHEP 0901 (2009) 043 . arXiv:0811.4150 [hep-ph] 16 - Higher-Derivative Lee-Wick Unification - Carone, Christopher D. Phys.Lett. B677 (2009) 306-310 . arXiv:0904.2359 [hep-ph] 17 - No Lee-Wick Fields out of Gravity - Rodigast, Andreas et al. Phys.Rev. D79 (2009) 125017 . arXiv:0903.3851 [hep-ph] . HU-EP-09-13 18 - A Nonsingular Cosmology with a Scale-Invariant Spectrum of Cosmological Perturbations from Lee-Wick Theory - Cai, Yi-Fu et al. Phys.Rev. D80 (2009) 023511 . arXiv:0810.4677 [hep-th] 19 - Searching for Lee-Wick gauge bosons at the LHC - Rizzo, Thomas G. JHEP 0706 (2007) 070 . arXiv:0704.3458 [hep-ph] . SLAC-PUB-12481 20 - Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders - Rizzo, Thomas G. JHEP 0801 (2008) 042 . arXiv:0712.1791 [hep-ph] . SLAC-PUB-13039 21 - Flavor Changing Neutral Currents in the Lee-Wick Standard Model - Dulaney, Timothy R. et al. Phys.Lett. B658 (2008) 230-235 . arXiv:0708.0567 [hep-ph] . CALT-68-2656 22 - Electroweak Precision Data and the Lee-Wick Standard Model - Underwood, Thomas E.J. et al. Phys.Rev. D79 (2009) 035016 . arXiv:0805.3296 [hep-ph] . IPPP-08-21, DCPT-08-42 23 - Custodial Isospin Violation in the Lee-Wick Standard Model - Chivukula, R.Sekhar et al. Phys.Rev. D81 (2010) 095015 . arXiv:1002.0343 [hep-ph] . MSUHEP-100201 24 - The Process gg ---> h(0) ---> gamma gamma in the Lee-Wick standard model - Krauss, F. et al. Phys.Rev. D77 (2008) 015012 . arXiv:0709.4054 [hep-ph] . IPPP-07-49, DCPT-07-98 25 - Constraints on the Lee-Wick Higgs Sector - Carone, Christopher D. et al. Phys.Rev. D80 (2009) 055020 . arXiv:0908.0342 [hep-ph] 26 - Higgs ---> Gamma Gamma beyond the Standard Model - Cacciapaglia, Giacomo et al. JHEP 0906 (2009) 054 . arXiv:0901.0927 [hep-ph] . LYCEN-2008-13 27 - Collider Bounds on Lee-Wick Higgs Bosons - Alvarez, Ezequiel et al. Phys.Rev. D83 (2011) 115024 . arXiv:1104.3496 [hep-ph] . ZU-TH-06-11

  9. LWSM Higgs Sector (AF formalism) D µ ˜ H † ˜ L = ( ˆ D µ H ) † ( ˆ D µ H ) � ( ˆ D µ ˜ H ) † ( ˆ H ˜ H � V ( H � ˜ H ) + M 2 H ) , L µ T a + g 2 W a µ T a + g 1 B µ Y h A µ = gA a where ˆ D µ = ∂ µ + i ( A µ + ˜ A µ ) w ˜ gauge the two doublets are p p H > = H > = ˜ ⇥ ˜ h + , (˜ ⇥ ⇤ ⇤ 0 , ( v + h 0 ) / 2 , h 0 + i ˜ p 0 ) / 2 h ˜ h h 0 i = v , h 0 i = 0 . h 0 ) 2 + M 2 L mass = � λ 4 v 2 ( h 0 � ˜ 2 (˜ h 0 ˜ p 0 + 2˜ h + ˜ H h 0 + ˜ p 0 ˜ h � ) . mixing between the Higgs scalar and its LW–partner. Th

  10. LWSM Higgs Sector ! ! ! h cosh φ h sinh φ h h phys Symplectic rotation: = ˜ ˜ h sinh φ h cosh φ h h phys Mass eigenvalues: ˜ h 0 h 0 p 0 ˜ h ± CP even even odd none m 2 q q ⇣ ⌘ ⇣ ⌘ 1 1 1 � 2 v 2 λ /M 2 1 � 2 v 2 λ /M 2 phys 1 � 1 + 1 1 M 2 H H 2 2 H

  11. LWSM Higgs Sector Mixing angle: 2 m 2 r h 0 ≡ m h 0 , phys λ v 2 = h 0 , phys h 0 ) , , (1 + r 2 m ˜ h 0 , phys 1 s H = cosh φ h = h 0 ) 1 / 2 , (1 − r 4 1 + r 2 h 0 s H � ˜ H = cosh φ h − sinh φ h = h 0 ) 1 / 2 . (1 − r 4

  12. LWSM Yukawa Interactions (in auxiliary field formalism) L = Ψ t i η 3 ˆ D Ψ t − Ψ t R M t η 3 Ψ t L η 3 M † Ψ t L − Ψ t / R , L , ˜ t R , ˜ Ψ t > Ψ t > L = ( T L , ˜ t 0 R = ( t R , ˜ T 0 T L ) , R ) SU(2) doublet: g. Q L = ( T L , B L ) > s which in turn form 0 1 0 1 m t 0 − m t 1 0 0 M t η 3 = A , η 3 = − m t − M u m t 0 − 1 0 B C B C @ @ A 0 0 − M Q 0 0 − 1

  13. LWSM Diagonalization of mass matrices Ψ L ( R ) , phys = η 3 S † M t, phys η 3 = S † L ( R ) η 3 Ψ L ( R ) , R M t η 3 S L , S L η 3 S † S R η 3 S † L = η 3 and R = η 3 Higgs-quark vertices L = − 1 − 1 ⇣ ⌘ ⇣ ⌘ v ( h 0 − ˜ L g † L g † R g t Ψ t t Ψ t R g t Ψ t t Ψ t Ψ t L + Ψ t Ψ t L − Ψ t h 0 ) v ( − i ˜ p 0 ) R R 0 1 m t 0 − m t g t, phys = S † g t = A , R g t S L − m t 0 m t B C @ 0 0 0

  14. LWSM LW gauge bosons are massive and mix: 1 B µ ν + W µ ν W µ ν − ˜ B µ ν B µ ν − ˜ � W µ ν � B µ ν ˜ W µ ν ˜ L 2 g = − 2Tr a ) + g 2 2 v 2 1 2 ˜ B µ + M 2 2 ˜ B µ ˜ µ ˜ ( W 1 , 2 + ˜ W 1 , 2 µ ) 2 W a W µ 2( M 1 − µ 8 v 2 B µ + g 2 W 3 W 3 µ ) 2 8 ( g 1 B µ + g 1 ˜ µ + g 2 ˜ + Gauge interactions: [ g 1 ¯ ψ ( � B + � ˜ B ) ψ + g 2 ¯ ψ ( � W + � ˜ � L int = W ) ψ ] − ψ = qL,uR,dR g 1 ¯ ψ + g 2 ¯ � � ψ ( � B + � ˜ ˜ B )˜ ψ ( � W + � ˜ ˜ W ) ˜ � + ψ . ψ = q,u,d

  15. LWSM Couplings to gauges bosons and fermions E. Alvarez, E. Coluccio, J.Zurita: arXiv 1004.3496 t F ˜ 1 / 2 ( β t P σ ( gg → ˜ 1 + r 2 g ˜ P ) P ) Pt ¯ | 2 , ˜ g h 0 f ¯ f = − g ˜ f = cosh θ − sinh θ = 1 − r 4 , g ˜ f = − 1 . g 2 √ Pgg = σ SM ( gg → H ) = | h 0 f ¯ Pf ¯ ˜ F 1 / 2 ( β t P ) ˜

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend