hvp lattice finite volume
play

HVP lattice finite-volume Giusti corrections OUTLINE Motivations - PowerPoint PPT Presentation

Davide HVP lattice finite-volume Giusti corrections OUTLINE Motivations Second Plenary Workshop of the Muon g-2 Theory Initiative Helmholtz Institut Mainz Current status from Collaborations 18th - 22nd June 2018 Motivations HVP of


  1. Davide HVP lattice finite-volume Giusti corrections OUTLINE ▪ Motivations Second Plenary Workshop of the Muon g-2 Theory Initiative Helmholtz Institut Mainz ▪ Current status from Collaborations 18th - 22nd June 2018

  2. Motivations

  3. HVP of the muon HPQCD 16 CLS/Mainz 17 ≳ 2% lattice data BMW 17 q 100% µ RBC/UKQCD 18 q ETMC 18 lattice + e + e - RBC/UKQCD 18 ~ 30% + 70% FJ 17 ≳ 0.4% e + e - data DHMZ 17 100% KNT18 no New Physics ates 550 600 650 700 750 HVP * 10 10 a µ FVEs cannot be neglected 3

  4. LO-HVP FVEs Chiral Perturbation Theory Blum et al. 2018; Borsanyi et al. 2017; Chakraborty et al. 2017 Bijnens and Relefors 2017; Aubin et al. 2016 Gounaris-Sakurai parameterisation + Lüscher formalism RBC/UKQCD Della Morte et al. 2017 talk by C. Lehner ETMC, talk by S. Simula (new updates) Time-momentum representation Izubuchi et al. 2018 4

  5. Current status from Collaborations

  6. 𝝍 PT Groups Aubin et al. 2016 0.012 Q 2 ! m µ 2 4 0.010 ( ) ( ) − Π 0 2 ( ) LO,HVP Q max Q max ∫ ⎡ ⎤ MILC ensemble ⎡ ⎤ ⎦ = 4 α em Π Q 2 2 2 dQ 2 f Q 2 a µ ⎣ 0.008 ⎣ ⎦ 0 a = 0.059 fm 0.006 ( ) Π Q 2 m π = 220 MeV ( ) ( ) = Q 2 δ µ ν − Q µ Q ν Π µ ν Q 0.004 L = 3.8 fm 0.002 0.000 0.00 0.05 0.10 0.15 0.20 NLO 𝝍 PT; PBCs ⎡ ⎤ Q 2 GeV 2 ⎣ ⎦ connected (10/9) x [ contribution 10 9 4 πα em Π ChPT ( Q ) = π µ ν sin ( p + Q/ 2) µ sin ( p + Q/ 2) ν 1 X 4 π L 3 T (2 P κ (1 − cos p κ ) + m 2 π ) (2 P κ (1 − cos ( p + Q ) κ ) + m 2 π ) p ] ✓ ◆ 1 cos p µ X − 2 δ µ ν L 3 T (2 P κ (1 − cos p κ ) + m 2 π ) p weighted average Staggered 𝝍 PT taste-split pion spectrum 6 �

  7. 𝝍 PT Groups ∑ m π L = 4.2 44 : Π 44 Π ii Aubin et al. 2016 A 1 : ; A 1 i - 0.008 - 0.008 - 0.010 - 0.010 - 0.012 - 0.012 Red A 1 subtracted Red A 1 unsubtracted Blue A 1 44 unsubtracted Blue A 1 44 unsubtracted Black A 1 infinite volume Black A 1 infinite volume - 0.014 - 0.014 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 ˆ ⎡ ⎤ ˆ ⎡ ⎤ Q 2 GeV 2 Q 2 GeV 2 ⎣ ⎦ ⎣ ⎦ Blue laEce data Blue laEce data Red NLO ChPT Red NLO ChPT GeV 2 GeV 2 10-15% FVEs ˆ ⎡ ⎤ Q 2 GeV 2 ⎣ ⎦ ˆ ⎡ ⎤ Q 2 GeV 2 7 ⎣ ⎦

  8. 𝝍 PT Groups NNLO 𝝍 PT PQ 𝝍 PT + twisted BCs Bijnens and Relefors 2017 p p ✓ ◆ ⇣ ⌘ − q 2 − q 2 p � q 2 , 0 , 0 q = 0 , q = 0 , 2 , 0 √ √ 2 , 4e-05 4e-05 q 2e-05 2e-05 ∆ V Π µ ν part twist p 4 +p 6 ∆ V Π µ ν part twist p 4 +p 6 0 0 sin θ u sin θ x u µ ν =00 -2e-05 -2e-05 µ ν =00 µ ν =11 µ ν =11 -4e-05 -4e-05 µ ν =22 µ ν =12 µ ν =33 -6e-05 -6e-05 µ ν =33 -8e-05 -8e-05 ♦ ♦ -0.0001 -0.0001 -0.1 -0.08 -0.06 -0.04 -0.02 0 -0.1 -0.08 -0.06 -0.04 -0.02 0 q 2 q 2 m π L = 4 FV corrections: different twist angles at same q 2 Small corrections with respect to NLO FVEs sizeable (few %) for present lattices 8

  9. RBC/UKQCD Collaboration Blum et al. 2018 L = 5.4 ÷ 5.5 fm a = 0.084 ÷ 0.114 fm Two ensembles T = 10.7 ÷ 11 fm m π L = 3.8 ÷ 3.9 Physical mass point FVEs corrected with NLO 𝝍 PT Systematic uncertainty from the largest ratio of p 6 to p 4 ( ) = 15.9 3.7 ( ) ⋅ 10 − 10 Δ FVEs a µ conn ud Talk by C. Lehner ( ) = 20 3 ( ) ⋅ 10 − 10 Δ FVEs a µ conn ud GSL approach: (updates) 9

  10. BMW Collaboration Borsanyi et al. 2017 LO-HVP . 10 10 a µ L = 6.1 ÷ 6.6 fm BMWc + FV + IB BMWc + FV BMWc (L=6fm) ( T × L/a 2 ) β a [fm] RBC/UKQCD 18 T = 8.6 ÷ 11.3 fm 3.7000 0.134 64 × 48 HPQCD 16 3.7500 0.118 96 × 56 ETM 14 3.7753 0.111 84 × 56 Physical mass point 3.8400 0.095 96 × 64 Jegerlehner 17 3.9200 0.078 128 × 80 DHMZ 17 m π L = 4.2 ÷ 4.5 4.0126 0.064 144 × 96 KNT 18 RBC/UKQCD 18 FVEs corrected with LQCD (N f ≥ 2+1) Pheno. NLO SU(2) S 𝝍 PT No new physics Pheno+LQCD 640 660 680 700 720 740 ( I =1 channel only) 700 Fig.S4 m π L ! 4.1 (FV + taste) crr. fixed Fig.S4 cont.lim. + FV 650 LO-HVP x 10 10 ( ) = 15.0 15.0 ( ) ⋅ 10 − 10 600 I = 1 ud Δ FVEs a µ a µ ,ud 550 extrapolated to the continuum limit 500 0 0.005 0.01 0.015 0.02 a 2 [fm 2 ] (six lattice spacings ranging from 0.064 to 0.134 fm) 10

  11. HPQCD Collaboration Chakraborty et al. 2017 L = 2.4 ÷ 5.8 fm Combined FV and discretisation effects (pion tastes) T = 7.2 ÷ 8.6 fm mixing to all orders γ − ρ 0 − π + π − NLO S 𝝍 PT + in leading interactions m π = 134 ÷ 311 MeV 2 r π m π L = 3.2 ÷ 5.4 × ρ π 3 lattice volumes @: 5 times larger m π ! 220 MeV ˆ E , f ρ , m ρ , m π ) = � ˆ Π ( � q 2 Σ ( � q 2 E , m π , m π ) a = 0.12 fm ⌘ 2 ⇣ 1 + g ρ g ρππ ˆ q 2 Σ ( � q 2 E , m π , m π ) + f 2 E ρ 2 m 2 Preliminary ⇣ ⌘ ρππ ˆ q 2 Σ ( � q 2 1 + g 2 + m 2 E , m π , m π ) ρ ρ E ( ) ! 610 9 ( ) ⋅ 10 − 10 LO,HVP a µ conn ud small FVEs+discr. for Talk by R. S. Van de Water s quark contribution Uncertainty: ±0.7% Largest correction for lightest pion masses: 7% 11

  12. Mainz Group Della Morte et al. 2017 G ( x 0 ) � L = 2.1 ÷ 4.2 fm K ( x 0 ) /m µ G ( x 0 ) f K ( x 0 ) /m µ 0 . 013 T = 4.2 ÷ 8.4 fm Data 0 . 015 1-Exp 0 . 012 GS( L ) u/d quarks GS( ∞ ) 0 . 011 0 . 01 m π = 185 ÷ 495 MeV 0 . 01 0 . 005 0 . 009 m π L = 4.0 ÷ 6.0 0 0 . 008 m π = 185 MeV m π L = 4.0 0 . 007 − 0 . 005 FVEs corrected with x cut L/a = 32 ( L = 2 . 70 fm) 0 0 . 006 L/a = 48 ( L = 4 . 10 fm) L/a = 32 with FSE 0 . 015 Gounaris-Sakurai 0 . 005 L/a = 48 with FSE 0 . 004 0 . 01 parameterisation 0 . 6 0 . 8 1 . 2 1 . 4 1 . 6 1 . 8 1 2 m π = 280 MeV x 0 [fm] 0 . 005 + a = 0.085 fm m π = 268 MeV G ( x 0 ) � 0 K ( x 0 ) /m µ Lüscher formalism m π L = 4.2 0 . 002 − 0 . 005 x cut exp fit Γ ρ 0 L = 2 . 05 fm 0 0 . 5 1 1 . 5 2 2 . 5 3 parameters: GS m ρ L = 2 . 70 fm x 0 [fm] 0 . 0015 L = 4 . 10 fm FVEs: 5% shift in ππ interactions m π L ≈ 4 for a µ s quark 0 . 001 important for and near- phys. point t > 1 fm 0 . 0005 ( ) ⋅ 10 − 10 Δ FVEs a µ ! 20.4 4.1 Preliminary 0 0 0 . 5 1 1 . 5 2 2 . 5 3 Talk by H. Meyer x 0 [fm] m π = 140 MeV m π L = 4.0 12

  13. ETM Collaboration Talk by S. Simula L = 1.8 ÷ 3.5 fm u- and d-quark (connected) contributions T = 3.5 ÷ 7.1 fm 450 m π = 223 ÷ 495 MeV 400 400 FVE ~ 5 % M π ~ 320 MeV a ~ 0.09 fm 10 m π L = 3.0 ÷ 5.8 HVP (ud) * 10 HVP (ud) A40.XX A40.XX 350 M π ~ 320 MeV µ 350 a data a ~ 0.09 fm FVEs corrected with µ a FVE ~ 25 % dual + π−π 300 2 𝝆 Lüscher formalism FVE corr. ( π−π only) FVE corr. (dual + π−π ) 300 and GS F 250 π π 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 π + M π L M π L DG et al. 2017 dual pQCD contribution s-quark contribution representation 50 M π ~ 320 MeV A40.XX m ρ g ρππ a ~ 0.09 fm parameters: R dual E dual 400 FVE ~ few % 45 M π ~ 320 MeV a ~ 0.09 fm 10 HVP (ud) HVP (s) * 10 A40.XX pure FVEs: 40 e µ 350 a data he µ a full FVE corr. ∼ 5% correction to a µ 35 partial FVE corr. 300 m π = 135 MeV m π L ≈ 4 @ 2 3 4 5 6 7 8 9 10 30 a 2 → 0 M π L 2 3 4 5 6 7 8 M π L ( ) = 622.8 12.8 ( ) ⋅ 10 − 10 LO,HVP a µ conn ud 13

  14. FVE correction @ a 2 → 0 0 L=8.0 fm 1% -10 12 levels 10 -20 HVP ( ∞ )] * 10 the same as ChPT @ NLO L=6.0 fm 8 levels [Aubin et al. ’16, Bijnens&Relefors ’16] -30 non-interacting π−π (M π = 135 MeV) -40 µ HVP (L) - a interacting π−π (M π = 135 MeV) -50 L=4.5 fm interacting π−π (M π = 300 MeV) 4 levels -60 µ [a continuum limit -70 -80 2 4 6 8 10 M π L [Francis et al. ’13] 2 ! ⎧ ⎫ ⎡ ⎤ n 2 + 4 t 2 K 2 M π L 4 ( ) = M π 1 2 ! sinh M π L ! ⎪ ⎢ ⎥ ∞ ⎪ ( ) t ( ) t ⎣ ⎦ ⎡ ⎤ L ⎡ ⎤ ∞ n 2 + 4 t 2 non-interacting π - π : V ππ ( ) − V ππ 3 π 2 t dy K 0 M π y L n y − 1 ( ) ∑ ∫ ⎨ − M π L ! ⎬ 2 ! 2 L ⎢ ⎥ ⎣ ⎦ ( n 2 + 4 t 2 ) ⎣ ⎦ M π n ! ⎪ ⎪ n ≠ 0 1 ⎩ ⎭ interacting π - π : dual + π - π representation [note that Δ a μ HVP (L) depends approximately on M π L only] 14 Thursday, June 21, 18

  15. PACS Collaboration Izubuchi et al. 2018 Two ensembles FVEs estimated using TMR L = T = 5.4 ÷ 8.1 fm comparison between two volumes LO,HVP on L=5.4 fm is a = 0.085 fm ( ) ⋅ 10 − 10 10 ± 26 a µ from L=8.1 fm @ m π = 146 MeV near- phys. mass point m π L = 3.8 ÷ 5.8 40 Light 30 Backward state propagation 20 (2T=10.8 fm) 10 a µ 10 10 0 -10 positive contribution to a µ -20 4% @ t cut =2.6 fm ChPT(L/a=64,T/a=64) ChPT(L/a=64,T/a=128) (L/a=96,T/a=96) 146 MeV - (L/a=64,T/a=64) 146 MeV -30 (L/a=96,T/a=96) 146 MeV - (L/a=64,T/a=128) 146 MeV -40 15 0 0.5 1 1.5 2 2.5 3 t cut fm

  16. IB contribution: FVEs DG et al. 2017 Blum et al. 2018 ) s/c contribution only photon propagator h QED L prescription for expected to start at O( 1/L^3 ) zero mode subtraction (IR safe, neutral meson states, h vanishing charge radius) 0 G L ( x ) = 1 1 k 2 e ikx , X ˆ V Talk by S. Simula k 0.02 β =1.90, L=20 QED ∞ β =1.90, L=24 β =1.90, L=32 β =1.90, L=40 HVP (ud) 0.015 β =1.95, L=24 β =1.95, L=32 Z π d 4 k 1 β =2.10, L=48 HVP (ud) / a µ k 2 e ikx G 1 ( x ) = physical point 0.01 ˆ (2 π ) 4 � π δ a µ Analytical calculation 0.005 Talk by A. Portelli 0 0 0.01 0.02 0.03 0.04 0.05 16 m ud (GeV)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend