brunn minkowski type inequalities and conjectures
play

Brunn-Minkowski type inequalities and conjectures K aroly B or - PowerPoint PPT Presentation

Brunn-Minkowski type inequalities and conjectures K aroly B or oczky Alfr ed R enyi Institute of Mathematics and CEU Jena, September, 2019 Brunn-Minkowski inequality K , C convex bodies in R n , , > 0 K + C = {


  1. Brunn-Minkowski type inequalities and conjectures K´ aroly B¨ or¨ oczky Alfr´ ed R´ enyi Institute of Mathematics and CEU Jena, September, 2019

  2. Brunn-Minkowski inequality K , C convex bodies in R n , α, β > 0 α K + β C = { α x + β y : x ∈ K , y ∈ C } { x ∈ R n : � u , x � ≤ α h K ( u ) + β h C ( u ) ∀ u ∈ S n − 1 } = Brunn-Minkowski inequality α, β > 0 1 1 1 n ≥ α V ( K ) n + β V ( C ) V ( α K + β C ) n with equality iff K and C are homothetic ( K = γ C + x , γ > 0). Equivalent form λ ∈ (0 , 1) V ((1 − λ ) K + λ C ) ≥ V ( K ) 1 − λ V ( C ) λ .

  3. Optimal transportation to prove B-M inequality V ( K ) = V ( C ) = 1, K , C convex bodies in R n Caffarelli, Brenier ∃ C ∞ convex ϕ : int K → R such that T = ∇ ϕ : int K → int C bijective & det ∇ T = det ∇ 2 ϕ = 1 Gromov’s argument for Brunn-Minkowski (appendix to Milman-Schechtman) λ ∈ (0 , 1), y = (1 − λ ) x + λ T ( x ) ∈ (1 − λ ) K + λ C = ⇒ dy = det[(1 − λ ) I n + λ ∇ T ( x )] dx � � V ((1 − λ ) K + λ C ) ≥ det[(1 − λ ) I n + λ ∇ T ( x )] dx ≥ 1 dx = 1 K K det[(1 − λ ) A + λ B ] ≥ (det A ) 1 − λ (det B ) λ for positive definite A , B Figalli, Maggi, Pratelli - stability of Brunn-Minkowski (strongest version by Kolesnikov, Milman)

  4. Surface area measure, Minkowski’s first inequality S K - surface area measure on S n − 1 of a convex body K in R n ◮ ∂ K is C 2 + = ⇒ dS K = κ − 1 d H n − 1 κ ( u ) =Gaussian curvature at x ∈ ∂ K where u is normal. ◮ K polytope, F 1 , . . . , F k facets, u i exterior unit normal at F i S K ( { u i } ) = H n − 1 ( F i ) . Minkowski’s first inequality If V ( K ) = V ( C ), then � � S n − 1 h C dS K ≥ S n − 1 h K dS K , with equality iff K and C are translates.

  5. Minkowski problem - characterize S K Given Borel measure µ on S n − 1 with � S n − 1 u d µ ( u ) = o =origin, to solve the Minkowski problem finding K with µ = S K , ◮ Minimize � S n − 1 h C d µ under the condition V ( C ) = 1 ◮ Uniqueness up to translation comes from uniqueness in the Minkowski inequality Monge-Ampere type differential equation on S n − 1 : det( ∇ 2 h + h I n − 1 ) = κ − 1 where h ( u ) = h K ( u ) = max {� u , x � : x ∈ K } support function. Curvature function For any convex body K , f K ( u ) = det( ∇ 2 h K ( u ) + h K ( u ) I n − 1 ) for H n − 1 a.e. u ∈ S n − 1

  6. Decomposition of Surface area measure Lebesgue’s decomposition of S K for a convex body K S K = S a K + S s K where S s K singular K = f K d H n − 1 dS a Minkowski problem for curvature functions Given positive continuous f on S n − 1 � f = f K for a convex body K ⇐ ⇒ S n − 1 u · f ( u ) du = o Regularity theory of Monge-Ampere Given dS K = f K d H n − 1 , f K > 0 ◮ f K is C α for α ∈ (0 , 1] ⇐ ⇒ ∂ K is C 2 ,α + ◮ f K is C k for k ≥ 1 ⇐ ⇒ ∂ K is C k +2 +

  7. ?B-M type inequality for affine surface area? Monika Ludwig, Thomas Wannerer, Andrea Colesanti, K.B. Affine surface area � n � d H n − 1 = 1 n +1 d H n − 1 ( x ) n +1 Ω( K ) = S n − 1 f κ ( x ) K ∂ K Theorem (Lutwak) If n = 2 and α, β > 0, then 3 3 3 2 ≥ α Ω( K ) 2 + β Ω( C ) 2 , Ω( α K + β C ) with equality if and only if K and C are homothetic. (Counter)example For n ≥ 3, there exist o -symmetric K and C n +1 n +1 n +1 n ( n − 1) < Ω( K ) n ( n − 1) + Ω( C ) n ( n − 1) . Ω( K + C )

  8. Curvature image bodies Any convex body M in R n has a unique Santalo point s ( M ) ∈ int M such that z ∈ int M V (( M − z ) ∗ ) = V (( M − s ( M )) ∗ ) . min = ⇒ � S n − 1 u · h M − s ( M ) ( u ) − ( n +1) d H n − 1 ( u ) = o . Minkowski problem = ⇒ ∃ convex body CM (curvature image) f CM ( u ) = h M − s ( M ) ( u ) − ( n +1) for u ∈ S n − 1 . Theorem (Lutwak, Schneider) If K , M convex bodies and K ⊂ CM , then Ω( K ) ≤ Ω( CM ) , with equality if and only if K = CM .

  9. Affine surface area and curvature image bodies Monika Ludwig, Thomas Wannerer, Andrea Colesanti ∂ M is C 2 ⇒ ∂ ( CM ) is C 4 + = + (Monge-Ampere equations). Theorem α, β > 0 and N = CM for a convex body M with C 2 + boundary. There exists δ > 0 such that if the C 4 distance of convex bodies K and C with C 4 boundary is less than δ from N , then n +1 n +1 n +1 n ( n − 1) ≥ α Ω( K ) n ( n − 1) + β Ω( C ) n ( n − 1) , Ω( α K + β C ) with equality if and only if K and C are homothetic.

  10. ?B-M type inequality for p -affine surface area? Monika Ludwig, Thomas Wannerer, Andrea Colesanti p -Affine surface area p � = − n and o ∈ int K (Hug, Ludwig) n (1 − p ) � n � − p d H n − 1 = S n − 1 ( h n +1 n + p dV K n + p n + p Ω p ( K ) = f K ) S n − 1 h f K K K Theorem n = 2, 2 3 ≤ p ≤ 1, α, β > 0, o ∈ int K , o ∈ int C 2+ p 2+ p 2+ p 2(2 − p ) ≥ α Ω p ( K ) 2(2 − p ) + β Ω p ( C ) 2(2 − p ) . Ω p ( α K + β L ) If 2 3 ≤ p < 1, then equality holds if and only if K and C are dilates. Remark Seems to fail completely if p < 2 3 or p > 1

  11. Logarithmic Minkowski problem - Cone volume measure n h K dS K - cone volume measure on S n − 1 if o ∈ K dV K = 1 (Gromov, Milman, 1986) - also called L 0 surface area measure ◮ K polytope, F 1 , . . . , F k facets, u i exterior unit normal at F i V K ( { u i } ) = h K ( u i ) H n − 1 ( F i ) = V ( conv { o , F i } ) . n ◮ V K ( S n − 1 ) = V ( K ). Monge-Ampere type differential equation on S n − 1 for h = h K if µ has a density function f : h det( ∇ 2 h + h I ) = f B. Lutwak, Yang, Zhang solved in the even case

  12. Logarithmic ( L 0 ) Brunn-Minkowski conjecture λ ∈ [0 , 1], o ∈ int K , int C (1 − λ ) K + 0 λ C = { x ∈ R n : � u , x � ≤ h K ( u ) 1 − λ h C ( u ) λ ∀ u ∈ S n − 1 } λ K + 0 (1 − λ ) C ⊂ λ K + (1 − λ ) C Conjecture (Logarithmic Brunn-Minkowski conjecture) λ ∈ (0 , 1) , K, C are o-symmetric V ((1 − λ ) K + 0 λ C ) ≥ V ( K ) 1 − λ V ( C ) λ with equality iff K and C have dilated direct summands. Conjecture (Logarithmic Minkowski conjecture) For o-symmetric K, C, if V ( K ) = V ( C ) , then � � S n − 1 log h C dV K ≥ S n − 1 log h K dV K , with equality iff K and C have dilated direct summands.

  13. Known cases of the logarithmic B-M conjecture 1 ◮ Interesting for any log-concave measure (like Gaussian) instead of volume log B-M conjecture for volume = ⇒ log B-M conjecture for any log-concave measure (Saroglou) ◮ n = 2 for volume (Stancu + BLYZ) ◮ K and C are unconditional for any log-concave measure - follows directly from Pr´ ekopa-Leindler (Bollob´ as&Leader + Cordero-Erausquin&Fradelizi&Maurey + Saroglou on coordinatewise product) ◮ K and C are dilates for the Gaussian measure (Cordero-Erausquin&Fradelizi&Maurey on B -conjecture) ◮ Holds for the volume in R 2 n = C n if K and C are complex convex bodies (Rotem)

  14. Logarithmic B-M conjecture for almost ellipsoids Chen, Huang, Li, Liu verified logarithmic B-M conjecture based on a result by Milman-Kolesnikov if K is close to be an ellipsoid: ∃ ε n > 0 such that if K , C o -symmetric with V ( K ) = V ( C ) and E ⊂ K ⊂ (1 + ε n ) E for an ellipsoid E , then � � S n − 1 log h C dV K ≥ S n − 1 log h K dV K , with equality iff C = K .

  15. Consequences of the log-B-M conjecture - Gardner-Zvavitch Conjecture Livshyts, Marsiglietti, Nayar, Zvavitch logarithmic B-M conjecture = ⇒ Gardner-Zvavitch Conjecture 1 1 1 n ≥ αγ ( K ) n + (1 − α ) γ ( C ) γ ( α K + (1 − α ) C ) n for o -symmetric K , C and the Gaussian measure γ on R n . ( γ can be replaced by any even log-concave measure) Theorem (Kolesnikov, Livshyts) � � K x d γ ( x ) = o and C x d γ ( x ) = o = ⇒ 1 1 1 2 n ≥ αγ ( K ) 2 n + (1 − α ) γ ( C ) γ ( α K + (1 − α ) C ) 2 n

  16. L p surface area measures L p surface area measures (Lutwak 1990) p ∈ R dS K , p = h 1 − p dS K = nh − p K dV K K Examples ◮ S K , 1 = S K ◮ S K , 0 = nV K ◮ S K , − n related to SL ( n ) invariant f K ( u ) h K ( u ) n +1 Theorem (Chou&Wang,Chen&Li&Zhu,B&Bianchi&Colesanti) If p > 0 , p � = 1 , n, then any finite Borel measure µ on S n − 1 not concentrated on any closed hemisphere is of the form µ = S K , p . Remark S n − 1 h p ◮ Minimize � C d µ under the condition V ( C ) = 1 ◮ Conjectured to be unique in the even case if 0 < p < 1

  17. L p Brunn-Minkowski inequality/conjecture p > 0, λ ∈ (0 , 1), o ∈ int K , int C λ K + p (1 − λ ) C = { x ∈ R n : � u , x � p ≤ λ h K ( u ) p +(1 − λ ) h C ( u ) p ∀ u } � 1 / p λ h p K + (1 − λ ) h p � p ≥ 1 h λ K + p (1 − λ ) C = C L p Brunn-Minkowski inequality/conjecture p p p n ≥ λ V ( K ) n + (1 − λ ) V ( C ) V ( λ K + p (1 − λ ) C ) n with equality iff K and C are dilated. Equivalent V ( λ K + p (1 − λ ) C ) ≥ V ( K ) λ V ( C ) 1 − λ Theorem ( p > 1, Firey, 1962) L p Brunn-Minkowski inequality holds if o ∈ int K , int C Conjecture (0 < p < 1, BLYZ, 2012) L p Brunn-Minkowski inequality holds if K and C are o-symmetric. L 0 = ⇒ L p for 0 < p < 1, L 1 = ⇒ L p for p > 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend