constant mean curvature surfaces in minkowski 3 space via
play

Constant mean curvature surfaces in Minkowski 3-space via loop - PowerPoint PPT Presentation

CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Constant mean curvature surfaces in Minkowski 3-space via loop groups David Brander Now: Department of Mathematics Kobe University (From August 2008: Danish Technical


  1. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Constant mean curvature surfaces in Minkowski 3-space via loop groups David Brander Now: Department of Mathematics Kobe University (From August 2008: Danish Technical University) Geometry, Integrability and Quantization - Varna 2008

  2. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Outline CMC Surfaces in Euclidean Space

  3. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Outline CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space The loop group construction

  4. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Constant Mean Curvature Surfaces in Euclidean 3-space • Soap films are CMC surfaces. • Air pressure on both sides of surface the same ↔ mean curvature H = 0, minimal surface

  5. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Minimal Surfaces: H = 0 • Gauss map of a minimal surface is holomorphic . Figure: Costa’s surface

  6. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Minimal Surfaces: H = 0 • Gauss map of a minimal surface is holomorphic . • Weierstrass representation: pair of holomorphic functions ↔ minimal surface Figure: Costa’s surface

  7. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space CMC H � = 0 Surfaces • Gauss map is a harmonic (not holomorphic) map into S 2 = SU ( 2 ) / K , K = { diagonal matrices } . Figure: A constant non-zero mean curvature surface

  8. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space CMC H � = 0 Surfaces • Gauss map is a harmonic (not holomorphic) map into S 2 = SU ( 2 ) / K , K = { diagonal matrices } . • Loop group frame F λ . Figure: A constant non-zero mean curvature surface

  9. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space CMC H � = 0 Surfaces • Gauss map is a harmonic (not holomorphic) map into S 2 = SU ( 2 ) / K , K = { diagonal matrices } . • Loop group frame F λ . • Can recover f from the loop group map F λ via a simple formula. Figure: A constant non-zero mean curvature surface

  10. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods • Λ G C = { γ : S 1 → G C | γ smooth } • F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a

  11. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods • Λ G C = { γ : S 1 → G C | γ smooth } • F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a • Example: flat surfaces in S 3 .   ω λβ λθ F − 1  = a 0 + a 1 λ, − λβ t λ d F λ = 0 0  − λθ t 0 0 order ( 0 , 1 ) .

  12. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a 1. AKS theory: 2. KDPW Method: 3. Dressing:

  13. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a 1. AKS theory: Constructs order ( 0 , b ) maps, b > 0, by solving ODE’s. Related to inverse scattering. 2. KDPW Method: 3. Dressing:

  14. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a 1. AKS theory: Constructs order ( 0 , b ) maps, b > 0, by solving ODE’s. Related to inverse scattering. 2. KDPW Method: Constructs order ( a , b ) maps, a < 0 < b , from a pair of ( a , 0 ) and ( 0 , b ) maps. 3. Dressing:

  15. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Loop Group Methods F λ : M → Λ G C is of connection order ( a , b ) if b F − 1 � a i λ i . λ d F λ = a 1. AKS theory: Constructs order ( 0 , b ) maps, b > 0, by solving ODE’s. Related to inverse scattering. 2. KDPW Method: Constructs order ( a , b ) maps, a < 0 < b , from a pair of ( a , 0 ) and ( 0 , b ) maps. 3. Dressing: Any kind of connection order ( a , b ) maps. Produces families of new solutions from a given solution.

  16. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Krichever-Dorfmeister-Pedit-Wu (KDPW) Method • Need Birkhoff factorization : Λ G C “ = ” Λ + G C · Λ − G C , where Λ ± G C consists of loops which extend holomorphically to D and ˆ C \ D resp.

  17. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Krichever-Dorfmeister-Pedit-Wu (KDPW) Method • Need Birkhoff factorization : Λ G C “ = ” Λ + G C · Λ − G C , where Λ ± G C consists of loops which extend holomorphically to D and ˆ C \ D resp. • If F λ is of order ( a , b ) , a < 0 < b , decompose F = F + G − = F − G + .

  18. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Krichever-Dorfmeister-Pedit-Wu (KDPW) Method • Need Birkhoff factorization : Λ G C “ = ” Λ + G C · Λ − G C , where Λ ± G C consists of loops which extend holomorphically to D and ˆ C \ D resp. • If F λ is of order ( a , b ) , a < 0 < b , decompose F = F + G − = F − G + . • Then F + is of order ( 0 , b ) and F − is of order ( a , 0 ) :

  19. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Krichever-Dorfmeister-Pedit-Wu (KDPW) Method • Need Birkhoff factorization : Λ G C “ = ” Λ + G C · Λ − G C , where Λ ± G C consists of loops which extend holomorphically to D and ˆ C \ D resp. • If F λ is of order ( a , b ) , a < 0 < b , decompose F = F + G − = F − G + . • Then F + is of order ( 0 , b ) and F − is of order ( a , 0 ) : F − 1 G − ( F − 1 d F ) G − 1 − + G − d G − 1 + d F + = − b � a i λ i ) G − 1 − + G − d G − 1 = G − ( − a = .

  20. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Krichever-Dorfmeister-Pedit-Wu (KDPW) Method • Need Birkhoff factorization : Λ G C “ = ” Λ + G C · Λ − G C , where Λ ± G C consists of loops which extend holomorphically to D and ˆ C \ D resp. • If F λ is of order ( a , b ) , a < 0 < b , decompose F = F + G − = F − G + . • Then F + is of order ( 0 , b ) and F − is of order ( a , 0 ) : F − 1 G − ( F − 1 d F ) G − 1 − + G − d G − 1 + d F + = − b � a i λ i ) G − 1 − + G − d G − 1 = G − ( − a c 0 + ... + c b λ b . =

  21. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space KDPW Method • Conversely, given order ( 0 , b ) and ( a , 0 ) maps, F + and F − , we can construct an order ( a , b ) map F . • After a normalization, both directions unique: � F + � F ← → F − ( 0 , b ) ( a , b ) ( a , 0 )

  22. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Specific Case Harmonic Maps into Symmetric Spaces • G / K symmetric space, K = G σ . • On Λ G C , define involution ˆ σ : (ˆ σγ )( λ ) := σ ( γ ( − λ )) .

  23. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space Specific Case Harmonic Maps into Symmetric Spaces • G / K symmetric space, K = G σ . • On Λ G C , define involution ˆ σ : σ ⊂ Λ G C σ ⊂ Λ G C . • Fixed point subgroup Λ G ˆ ˆ

  24. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space • F λ ( z ) a connection order ( − 1 , 1 ) map, C → Λ G ˆ σ . • KDPW:

  25. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space • F λ ( z ) a connection order ( − 1 , 1 ) map, C → Λ G ˆ σ . • KDPW: F ↔ { F + , F − } • In this case, F + determined by F − , so F ↔ F −

  26. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space • F λ ( z ) a connection order ( − 1 , 1 ) map, C → Λ G ˆ σ . • KDPW: F ↔ F − • Fix λ ∈ S 1 : then F λ : C → G .

  27. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space • F λ ( z ) a connection order ( − 1 , 1 ) map, C → Λ G ˆ σ . • KDPW: F ↔ F − • Fix λ ∈ S 1 : then F λ : C → G . • Fact: Projection of F , to G / K , is a harmonic map C → G / K if and only if F − is holomorphic in z :

  28. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space • F λ ( z ) a connection order ( − 1 , 1 ) map, C → Λ G ˆ σ . • KDPW: F ↔ F − • Fix λ ∈ S 1 : then F λ : C → G . • Fact: Projection of F , to G / K , is a harmonic map C → G / K if and only if F − is holomorphic in z : order ( − 1 , 1 ) F ↔ F − order ( − 1 , − 1 ) harmonic holomorphic

  29. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space “Weierstrass Representation” for CMC H � = 0 Surfaces • a ( z ) , b ( z ) arbitrary holomorphic. Set � 0 � a ( z ) λ − 1 d z . α = b ( z ) 0

  30. CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space “Weierstrass Representation” for CMC H � = 0 Surfaces • a ( z ) , b ( z ) arbitrary holomorphic. Set � 0 � a ( z ) λ − 1 d z . α = b ( z ) 0 • Automatically, d α + α ∧ α = 0. Integrate to get F − : Σ → Λ G , connection order ( − 1 , − 1 ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend