list decoding reed solomon codes re encoding techniques
play

List-decoding Reed-Solomon codes: re-encoding techniques and Wu - PowerPoint PPT Presentation


  1. ����� � ���� � ��� �� ���� ���� ��� ����������� � � � �������� � � � � � � �������������������������� ������������������������ ������ ���� ����� �� List-decoding Reed-Solomon codes: re-encoding techniques and Wu algorithm via simultaneous polynomial approximations Vincent Neiger § , † , ‡ ´ Claude-Pierre Jeannerod § Eric Schost † Gilles Villard § § AriC, LIP, ´ Ecole Normale Sup´ erieure de Lyon, France † ORCCA, Computer Science Department, Western University, London, ON, Canada ‡ Supported by the international mobility grant Explo’ra doc from R´ egion Rhˆ one-Alpes Journ´ ees nationales de calcul formel CIRM, Luminy, France, November 5, 2014 Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 1 / 22

  2. Outline Decoding of Reed-Solomon codes via polynomial approximations 1 Re-encoding technique via polynomial approximations 2 Wu reduction via polynomial approximations 3 Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 2 / 22

  3. Decoding of Reed-Solomon codes via polynomial approximations Outline Decoding of Reed-Solomon codes via polynomial approximations 1 Re-encoding technique via polynomial approximations 2 Wu reduction via polynomial approximations 3 Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 3 / 22

  4. Decoding of Reed-Solomon codes via polynomial approximations Reed-Solomon codes At most e = n − t errors during transmission of a code word encoding noise w = w 0 + · · · + w k X k − − − − − − → ( w ( x 1 ) , . . . , w ( x n )) − − − → y = ( y 1 , . . . , y n ) i.e. # { i | w ( x i ) � = y i } � e or # { i | w ( x i ) = y i } � t Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 4 / 22

  5. Decoding of Reed-Solomon codes via polynomial approximations Decoding of Reed-Solomon codes Polynomial Reconstruction Input: x 1 , . . . , x n the n distinct evaluation points in K k the degree bound, e = n − t the error-correction radius ( y 1 , . . . , y n ) the received word in K n Output: All polynomials w in K [ X ] such that deg w � k and # { i | w ( x i ) = y i } � t Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 5 / 22

  6. Decoding of Reed-Solomon codes via polynomial approximations Key equations & Unique decoding Master, Interpolation and error-locator polynomials G ( X ) = � Λ( X ) = � 1 � i � n ( X − x i ) , R ( x i ) = y i , i | error ( X − x i ) Key equations: for every i , Λ( x i ) R ( x i ) = Λ( x i ) w ( x i ) Modular key equation Λ R = Λ w mod G where deg(Λ) � e , deg(Λ w ) � e + k , Λ monic. Unique decoding: e + k < n − e ⇔ e < n − k ⇒ unique rational solution Λ w Λ = w 2 computed in O ˜( n ) using e.g. the Extended Euclidean algorithm [Modern Computer Algebra, von zur Gathen - Gerhard, 2013] Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 6 / 22

  7. Decoding of Reed-Solomon codes via polynomial approximations List-decoding: Guruswami-Sudan algorithm √ If e < n − k 2 , unique decoding. If e < n − kn , polynomial-time decoding. Recall: deg w � k and # { i | w ( x i ) = y i } � t [Guruswami - Sudan, 1999] Interpolation step compute a polynomial Q ( X , Y ) such that: Q ( X , w ) has many roots Q ( X , w ) has small degree − → w solution ⇒ Q ( X , w ) = 0 Root-finding step find all Y -roots of Q ( X , Y ), keep those that are solutions Here we focus on the Interpolation step. Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 7 / 22

  8. Decoding of Reed-Solomon codes via polynomial approximations The interpolation step Interpolation With Multiplicities Input: number of points n , degree weight k , weighted-degree bound b =mt points { ( x i , y i ) } 1 � i � n in K 2 ( x i ’s distinct) list-size ℓ , multiplicity m ( m � ℓ ) Output: a nonzero polynomial Q in K [ X , Y ] such that ( i ) deg Y Q � ℓ, (list-size condition) deg X Q ( X , X k Y ) < b , ( ii ) (weighted-degree condition) ( iii ) ∀ i , Q ( x i , y i ) = 0 with multiplicity m (vanishing condition) Guruswami-Sudan: t 2 > kn ⇒ solution exists for some well-chosen m , ℓ − → linear system, compute a solution in polynomial time Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 8 / 22

  9. Decoding of Reed-Solomon codes via polynomial approximations Simultaneous polynomial approximations [Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] vanishing condition ⇔ system of modular equations: write Q ( X , Y ) = Q 0 ( X ) + Q 1 ( X ) Y + · · · + Q ℓ ( X ) Y ℓ for i ∈ { 1 , . . . , n } , Q ( x i , y i ) = 0 with multiplicity m  Q 0 + · · · + Q m − 1 R m − 1 + · · · + Q ℓ R ℓ = 0 mod G m      Q 1 + · · · + Q m − 1 mR m − 2 + · · · + Q ℓ ℓ R ℓ − 1 = 0 mod G m − 1  ⇐ ⇒ . . ...  . . = 0 mod G ···  . .    � �  R ℓ − m +1 = 0 mod G ℓ Q m − 1 + · · · + Q ℓ m − 1 where G = � 1 � i � n ( X − x i ) and ∀ i , R ( x i ) = y i . Dimensions of linearized problem: N = � M = 1 2 m ( m + 1) n equations , 0 � j � ℓ ( b − jk ) unknowns Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 9 / 22

  10. Decoding of Reed-Solomon codes via polynomial approximations Algorithms based on linearization Strategy: use degree bounds to linearize the problem � � Q (0) · · · Q ( b − 1) | Q (0) · · · Q ( b − k − 1) | · · · | Q (0) · · · Q ( b − ℓ k − 1) 0 0 1 1 ℓ ℓ vanishing condition ⇔ solution to an under-determined linear system [Guruswami - Sudan, 1999] Structure “not used”, cost O (( m 2 n ) ω ) ( ω = exponent of mat. mult.) [Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] Mosaic-Hankel system, cost O ( ℓ m 4 n 2 ) using [Feng - Tzeng, 1991] [Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014] Mosaic-Hankel system, cost O ˜( ℓ ω − 1 m 2 n ) using [Bostan - Jeannerod - Schost, 2007] Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 10 / 22

  11. Decoding of Reed-Solomon codes via polynomial approximations Algorithms based on reduced lattice bases Based on polynomial lattice reduction [Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010] [Bernstein, 2011] [Cohn - Heninger, 2011] Compute a known basis of approximants Use lattice reduction to find a small-degree approximant Cost O ˜( ℓ ω mn ) using [Giorgi - Jeannerod - Villard, 2003] (probabilistic) or [Gupta - Sarkar - Storjohann - Valeriote, 2012] Based on order basis computation Mirror all polynomials − → simultaneous Hermite-Pad´ e equations Compute an order basis of the resulting matrix of power series Cost O ˜( ℓ ω − 1 m 2 n ) using [Zhou - Labahn, 2012] Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 11 / 22

  12. Re-encoding technique via polynomial approximations Outline Decoding of Reed-Solomon codes via polynomial approximations 1 Re-encoding technique via polynomial approximations 2 Wu reduction via polynomial approximations 3 Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 12 / 22

  13. Re-encoding technique via polynomial approximations When some y i ’s are zero (case m = 1) Recall Q ( x i , y i ) = Q 0 ( x i ) + Q 1 ( x i ) y i + · · · + Q ℓ y ℓ i Assume y 1 = y 2 = · · · = y i 0 = 0, then for i � i 0 , Q ( x i , y i ) = 0 ⇔ Q 0 ( x i ) = 0 Thus Q 0 = G 0 � (for every i � i 0 , Q ( x i , y i ) = 0) ⇔ Q 0 Q 0 of degree < b − i 0 , where G 0 = � for some � 1 � i � i 0 ( X − x i ) − → Equations for points i = 1 , . . . , i 0 are pre-solved Then remains an easier approximation problem � Q 0 + Q 1 R / G 0 + · · · + Q ℓ R ℓ / G 0 = 0 mod ( G / G 0 ) Smaller dimensions: M − i 0 equations, N − i 0 unknowns Vincent Neiger ( ENS de Lyon ) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 13 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend