non binary polar codes using reed solomon codes and
play

Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic - PowerPoint PPT Presentation

Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic Geometry Codes Ryuhei Mori Toshiyuki Tanaka Graduate School of Informatics, Kyoto University Information Theory Workshop 2010 Contents Exponent of matrix Reed-Solomon matrix


  1. Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic Geometry Codes Ryuhei Mori Toshiyuki Tanaka Graduate School of Informatics, Kyoto University Information Theory Workshop 2010

  2. Contents Exponent of matrix ■ Reed-Solomon matrix - Our previous work ■ Simulation results - This work ■ Reed-Solomon matrix and Reed-Muller codes - This work ■ Hermitian codes - This work ■ 2 / 20

  3. Exponent of matrix G : ℓ × ℓ matrix on F q . ■ P e ( G , n ): error probability of polar codes of length ℓ n = : N ■ (generator matrix is submatrix of G ⊗ n ). When rate of polar codes is smaller than capacity, for any ǫ > 0 N E ( G ) − ǫ ≤ − log P e ( G , n ) ≤ N E ( G ) + ǫ where E ( G ) ∈ [0, 1) is ℓ − 1 E ( G ) : = 1 � log ℓ D i ℓ i = 0 D i : partial distance [Korada, S ¸a¸ so˘ glu, and Urbanke 2009] [Arıkan and Telatar 2008] 3 / 20

  4. Partial distance ℓ − 1 E ( G ) : = 1 � log ℓ D i ℓ i = 0 D i : partial distance D i : = d ( g i , � g i + 1 , ... , g ℓ − 1 � ) for 0 ≤ i ≤ ℓ − 2 D ℓ − 1 : = d ( g ℓ − 1 , 0) g i : i th row of G ■ � g i + 1 , ... , g ℓ − 1 � : a linear space spanned by g i + 1 , ... , g ℓ − 1 ■ d ( · , · ): Hamming distance ■     D 0 = 1 1 0 0 D 0 = 1 1 0 0  , D 1 = 1 1 0 1 D 1 = 2 1 0 1    D 2 = 3 1 1 1 D 2 = 2 1 1 0 D 0 D 1 D 2 = 3, D 0 D 1 D 2 = 4 4 / 20

  5. Intuitive explanation D ( G , n ): a minimum distance of polar codes constructed from G ⊗ n P e ( G , n ) ≥ 2 − aD ( G , n ) for some constant a > 0 N E ( G ) − ǫ ≤ − log P e ( G , n ) ≤ N E ( G ) + ǫ N E ( G ) − ǫ ≤ D ( G , n ) ≤ N E ( G ) + ǫ where E ( G ) ∈ [0, 1) is ℓ − 1 E ( G ) : = 1 � log ℓ D i ℓ i = 0 5 / 20

  6. Matrix transform   g 0 . .   .     g i − 1       g 0 g i + g j   .   G ′ = g i + 1 . ⇒ , for j > i G = =     .  .    .   . g ℓ − 1     g j   .   .   .   g ℓ − 1 The performance of SC decoder for polar codes is invariant under this transform Without loss of generality, we can assume D i = weight of i th row of G 6 / 20

  7. Minimum distance of polar codes G : ℓ × ℓ matrix on F q ■ D i : weight of i th row of G ■ D i 1 , i 2 ,..., i n : weight of i th row of G ⊗ n where ℓ -ary expansion of i is i 1 ... i n ■ D i 1 , i 2 ,..., i n = D i 1 D i 2 · · · D i n From the law of large numbers, one has to choose an index i where number of a ∈ { 0, ... , ℓ − 1 } in i 1 ... i n is about n / ℓ Hence, one has to choose an index i such that � n � ℓ − 1 ℓ � D i 1 , i 2 ,..., i n ≈ D i i = 0 ℓ − 1 � � n 1 � = N E ( G ) = exp log D i ℓ i = 0 7 / 20

  8. Contents Exponent of matrix ■ Reed-Solomon matrix - Our previous work ■ Simulation results - This work ■ Reed-Solomon matrix and Reed-Muller codes - This work ■ Hermitian codes - This work ■ 8 / 20

  9. Matrix with large exponent If G doesn’t satisfy D 0 ≤ D 2 ≤ · · · ≤ D ℓ − 1 (1) there is a matrix G ′ which is obtained by permutation of rows of G such that E ( G ′ ) ≥ E ( G ) and G ′ satisfies (1) [Korada, S ¸a¸ so˘ glu, and Urbanke 2009] If (1) is satisfied, D i = minimum distance of � g i , ... , g ℓ − 1 � . Hence, obtaining large E ( G ) is equivalent to obtaining a sequence of linear codes C 1 , ... , C ℓ which satisfies C i : a linear code of dimension i and length ℓ ■ minimum distance of C i is large for i ∈ { 1, ... , ℓ } ■ C 1 ⊆ C 2 ⊆ · · · ⊆ C ℓ ■ Reed-Solomon codes have these properties. 9 / 20

  10. Reed-Solomon matrix Let α be a primitive element of F q . A Reed-Solomon matrix G RS ( q ) is defined as α q − 2 α q − 3 · · · 1 0 α X q − 1  1 1 · · · 1 1 0  X q − 2 α ( q − 2)( q − 2) α ( q − 3)( q − 2) α q − 2 · · · 1 0   X q − 3  α ( q − 2)( q − 3) α ( q − 3)( q − 3) α q − 3  · · · 1 0   . .  . . . . .  . . . . . .   . . . · · · . . .     α q − 2 α q − 3 X · · · 1 0 α   1 1 1 · · · 1 1 1 Submatrix which consists of i th row to the last row is a generator matrix of extended Reed-Solomon code. The size ℓ of RS matrix is q . � � 1 0 Since G RS (2) = , RS matrix can be regarded as a generalization of Arıkan’s 1 1 � � 1 0 binary matrix . 1 1 Since D i = i + 1, E ( G RS ( q )) = log( q !) q log q 10 / 20

  11. Exponent of Reed-Solomon matrix E ( G RS ( q )) = log( q !) q log q 2 4 16 64 256 q E ( G RS ( q )) 0.5 0.573120 0.691408 0.770821 0.822264 q →∞ E ( G RS ( q )) = 1 lim The exponent of binary matrix of size smaller than 32 is smaller than 0.55 [Korada, S ¸a¸ so˘ glu, and Urbanke 2009] Reed-Solomon matrix is useful for obtaining large exponent ! How about the performance for finite blocklength ? 11 / 20

  12. Contents Exponent of matrix ■ Reed-Solomon matrix - Our previous work ■ Simulation results - This work ■ Reed-Solomon matrix and Reed-Muller codes - This work ■ Hermitian codes - This work ■ 12 / 20

  13. Simulation P e ( W ( i ) � Error probability of polar codes ≤ N ) i ∈ F c � 1 � 0 Binary polar codes using vs 4-ary polar codes using G RS (4) 1 1 Same blocklength as binary codes 2 7 , 2 9 , 2 11 , and 2 13 AWGN( σ = 0.97865) Capacity is about 0.5 13 / 20

  14. Simulation result 10 0 10 -1 Error probability 10 -2 N=2^7, 2^9, 2^11, 2^13 10 -3 binary polar codes 4-ary polar codes 10 -4 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 Rate 14 / 20

  15. Contents Exponent of matrix ■ Reed-Solomon matrix - Our previous work ■ Simulation results - This work ■ Reed-Solomon matrix and Reed-Muller codes - This work ■ Hermitian codes - This work ■ 15 / 20

  16. Polar codes and Reed-Muller codes: binary case [Arıkan 2009] X : 1 0 ( X 2 , X 1 ) :(1, 1)(1, 0)(0, 1)(0, 0)  1 0 0 0  00 X 2 X 1 � 1 � X 0 X 2 1 1 0 0 01     1 1 1 X 1 1 0 1 0 10   1 1 1 1 1 11 { i ∈ { 0, ... , 2 n − 1 } | P e ( W ( i 1 ) ··· ( i n ) ) < ǫ } Polar rule: { i ∈ { 0, ... , 2 n − 1 } | i 1 + · · · + i n > k } Reed-Muller rule: � 1 � 0 Binary polar codes using and binary Reed-Muller codes are similar. 1 1 Reed-Muller rule maximizes the minimum distance. 16 / 20

  17. Polar codes using RS matrix and Reed-Muller codes: q -ary case ( X 2 , X 1 ) : (2, 2) (2, 1) (2, 0) (1, 2) (1, 1) (1, 0) (0, 2) (0, 1) (0, 0) X 2 2 X 2   1 1 0 1 1 0 0 0 0 00 1 X 2 2 1 0 2 1 0 0 0 0 01 2 X 1   X 2   1 1 1 1 1 1 0 0 0 02 2   X 2 X 2   2 2 0 1 1 0 0 0 0 10 1     1 2 0 2 1 0 0 0 0 11 X 2 X 1     2 2 2 1 1 1 0 0 0 12 X 2   X 2   1 1 0 1 1 0 1 1 0 20   1   2 1 0 2 1 0 2 1 0 21 X 1   1 1 1 1 1 1 1 1 1 1 22 { i ∈ { 0, ... , q n − 1 } | P e ( W ( i 1 ) ··· ( i n ) ) < ǫ } Polar rule: { i ∈ { 0, ... , q n − 1 } | i 1 + · · · + i n > k } Reed-Muller rule: Q -ary polar codes using G RS ( q ) and q -ary Reed-Muller codes are also similar. { i ∈ { 0, ... , q n − 1 } | ( i 1 + 1) · · · ( i n + 1) > k } Hyperbolic rule: Hyperbolic rule maximizes the minimum distance (Massey-Costello-Justesen codes, hyperbolic cascaded RS codes). 17 / 20

  18. Contents Exponent of matrix ■ Reed-Solomon matrix - Our previous work ■ Simulation results - This work ■ Reed-Solomon matrix and Reed-Muller codes - This work ■ Hermitian codes - This work ■ 18 / 20

  19. Hermitian codes C i : a linear code of dimension i and length ℓ minimum distance of C i is large for i ∈ { 1, ... , ℓ } ■ C 1 ⊆ C 2 ⊆ · · · ⊆ C ℓ ■ Some class of algebraic geometry codes have the nested structure. G H ( q ): matrix using q -ary Hermitian codes q (even power of a prime) 4 16 64 256 E ( G RS ( q )) 0.573120 0.691408 0.770821 0.822264 E ( G H ( q )) 0.562161 0.707337 0.802760 0.859299 q 3 / 2 = size of G H ( q ) 8 64 512 4096 In order to obtain large exponent on fixed q , algebraic geometry codes are useful. 19 / 20

  20. Conclusion Conclusion Reed-Solomon matrix has large exponent (previous work) ■ 4-ary polar codes using Reed-Solomon matrix has better performance than ■ � 1 � 0 binary polar codes using for finite blocklength 1 1 Polar codes using Reed-Solomon matrix, Reed-Muller codes, and ■ Massey-Costello-Justesen/hyperbolic cascaded RS codes are similar (generator matrices are constructed from G RS ( q ) ⊗ n ) Matrices using Hermitian codes have larger exponent than RS matrix ■ (unless q = 4). But size of the matrices are large. Future works Other heuristic decoding for q -ary polar codes using Reed-Solomon matrix ■ e.g., symbolwise/bitwise belief propagation. 20 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend