on the properties and the construction of finite row
play

On the properties and the construction of finite-row ( t , s - PowerPoint PPT Presentation

On the properties and the construction of finite-row ( t , s )-sequences 1 Roswitha Hofer 2 Institute of Financial Mathematics, University of Linz, Austria 13.02.12, MCQMC12, Sydney, Australia 1 Partially joint work with Pirsic and with Larcher 2


  1. On the properties and the construction of finite-row ( t , s )-sequences 1 Roswitha Hofer 2 Institute of Financial Mathematics, University of Linz, Austria 13.02.12, MCQMC12, Sydney, Australia 1 Partially joint work with Pirsic and with Larcher 2 supported by the Austrian Science Fund (FWF), Project P21943. Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 1 / 19

  2. Overview of my talk Definition of finite-row ( t , s )-sequences Existence and examples of such sequences finite-row ( t , s )-sequences and Niederreiter-Halton sequences ... Experiments Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 2 / 19

  3. Definition (digital sequences in base q by Niederreiter 1987) s ≥ 1 , q ∈ P . Let C 1 , . . . , C s be N × N -matrices over the finite field Z q . � � x (1) n , . . . , x ( s ) ( x n ) n ≥ 0 , x n = n x ( i ) is generated as follows: n = n 0 + n 1 q + n 2 q 2 + · · · n � � ⊤ C i · ( n 0 , n 1 , . . . ) ⊤ =: y ( i ) 0 , y ( i ) ∈ Z N 1 , . . . q and := y ( i ) + y ( i ) q 2 + y ( i ) x ( i ) 0 1 2 q 3 + · · · ∈ [0 , 1) . n q If the generator matrices satisfy that each row contains just finitely many nonzero entries ... “finite-row (digital) sequence”. Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 3 / 19

  4. digital ( t , s )-sequences – condition on the rank structure! Here the generator matrices fulfill for all m ∈ N and all d 1 + . . . + d s = m − t , ( d i ≥ 0) that     m m � �� � � �� � gggggg } d 1 gggggg } d s     C 1 =  , . . . , C s =        m � �� � } gggggggggg d 1 the matrix has rank m − t . . . } d s Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 4 / 19

  5. Example (van der Corput sequence = finite-row (0 , 1)-sequence) The van der Corput sequence in base q is a finite-row (digital) (0 , 1)-sequence, since the generator matrix,   1 0 0 0 . . . 0 1 0 0   . . .   0 0 1 0 ∈ Z N × N   . . . ,   q 0 0 0 1   . . .   . . . . ... . . . . . . . . satisfies the condition on the rank structure and is a finite-row matrix. Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 5 / 19

  6. Example (digital (0 , s )-sequences by Faure 1982) For prime base q , the Pascal matrices P ( i ) defined by � 1 � � 2 � � 3 �   i 1 i 2 i 3 1 . . . 0 0 0 � 2 � � 3 � i 1 i 2 0 1   . . . P ( i ) := 1 1  ∈ Z N × N   � 3 � , i 1  0 0 1  q . . . 2  . . . . ... . . . . . . . . i ∈ { 0 , 1 . . . , q − 1 } generate a digital (0 , q )-sequence in base q . For q = 2 (Sobol 1967) the matrices are sketched: 1 10 20 32 1 10 20 32 1 1 1 1 10 10 10 10 20 20 20 20 32 32 32 32 1 10 20 32 1 10 20 32 Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 6 / 19

  7. Research Question Let s > 1 . Can finite rows satisfy for all m ∈ N and d 1 , . . . , d s ≥ 0 with d 1 + . . . + d s = m m � �� � · · · · · · · · · · · · } d 1 . has rank m ? . . · · · · · · · · · · · · } d s Do there exist multi-dimensional finite-row (0 , s ) -sequences? Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 7 / 19

  8. Lower bounds on the lengths: For s = 2 it is not so hard to check that     x 0 0 0 0 0 0 x 0 0 0 0 0 x . . . . . . x x x 0 0 0 0 x x x x 0 0 0     . . . . . .     x 0 0  and x 0 x x x x x x x x x     . . . . . .    . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . where the ‘ x ’ entries are nonzero have “lowest possible row lengths”. Theorem (Faure & Tezuka 2000) If - C 1 , . . . , C s ∈ Z N × N generate a digital (0 , s ) -sequence in prime base q q ≥ s and - M is a NUT matrix in Z q . ( “Scrambling Matrix” ) Then the matrices C 1 M , . . . , C s M generate a digital (0 , s ) -sequence. Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 8 / 19

  9. Idea (Construct a proper NUT scrambling matrix)   1 0 0 0     . . . 1 0 0 0 x x 1 0 0 0 0 0 0 1 0 0 . . . . . .   . . . 0 1 1 0 x x 0 1 1 0 0 0       0 0 1 0 . . . . . .       ·  = . . . 0 0 1 1 x x 0 0 1 1 x 0       0 0 0 1 . . . . . .      . . . . . . . . . . . . . . . ... ...   . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .   1 1 1 1     1 0 0 0 1 1 0 0 0 0 . . . x x 0 1 0 1 . . . . . .   . . . 0 1 1 0 x x 0 1 1 1 0 0       0 0 1 1 . . . . . .       · 0 0 1 1  = 0 0 1 0 . . . x x x x       0 0 0 1 . . . . . .      . . . . . . . . . . . . . . . ... ...   . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 9 / 19

  10. Theorem (H.& Larcher 2009) Let s ∈ N and q ∈ P . For all generator matrices C 1 , . . . , C s ∈ Z N × N of a q digital (0 , s ) -sequence in base q there exists a NUT matrix M ∈ Z N × N q such that C 1 M , . . . , C s M ∈ Z N × N are generator matrices of a finite-row q (0 , s ) -sequence in base q and they have even lowest possible row lengths . Figure: The Pascal matrices in base 2 and the modified matrices with lowest possible row lengths. 1 10 20 32 1 10 20 32 1 10 20 32 1 10 20 32 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 32 32 32 32 32 32 32 32 1 10 20 32 1 10 20 32 1 10 20 32 1 10 20 32 Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 10 / 19

  11. Figure: The Pascal matrices in base 5: 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 Figure: The modified matrices in base 5: 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 11 / 19

  12. A formula for the scrambling matrix? Theorem (H. & Pirsic 2011) Let q ∈ P . Then the following matrix is a suitable scrambling matrix for the Pascal matrices in base q. �� �� r S = , j − 1 j ≥ 1 , r ≥ 0 � n � where is the Karamata notation for the unsigned Stirling numbers of m the first kind. Furthermore the new generator matrices P (0) S , P (1) S , . . . , P ( q − 1) S , satisfy   1 − 1 0 0 0 · · · 0 1 − 2 0 0 · · ·   P ( i ) S = SQ i   , with Q =  . 0 0 1 − 3 0 · · ·    . ... ... ... . . · · · Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 12 / 19

  13. Further results on finite-row ( t , s )-sequences (H.& Pirsic, unp.) A formula for the scrambling matrix which goes along with the generator matrices of classical Niederreiter sequences. (H., 2012) Explicit construction of finite-row (0 , s )-sequences over finite fields F q . (H., unp.) Explicit construction of finite-row ( t , s )-sequences over finite fields F q . Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 13 / 19

  14. Motivation of finite-row sequences ... Koksma-Hlawka Inequality . � � N − 1 � � � [0 , 1] s f ( x ) d x − 1 � � ≤ V ( f ) D ∗ � � f ( x n ) � � N N � n =0 Need “ low-discrepancy sequence ”. Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 14 / 19

  15. Examples of low-discrepancy sequences digital ( t , s )-sequences (Sobol sequences, Faure sequences, Niederreiter sequences, ...) Halton sequences: ... Definition (Halton-sequence, Halton 1960) Take s different primes q 1 , . . . , q s and juxtapose the van der Corput sequences (a digital (0 , 1) -sequence) in the different bases q 1 , . . . , q s . Observation We take s one-dimensional low-discrepancy sequences and get an s-dimensional low-discrepancy sequence! Roswitha Hofer (Linz) finite-row ( t , s )-sequences MCQMC12 15 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend