physical transport phenomena 1
play

Physical transport phenomena /1 Transfer of mass and/or energy in a - PDF document

1/46 1 Transport processes (TRP) Transport processes Part 1 Ron Zevenhoven bo Akademi University Thermal and Flow Engineering / Vrme- och strmningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 2/46 1 Transport processes (TRP)


  1. 1/46 1 Transport processes (TRP) Transport processes – Part 1 Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 2/46 1 Transport processes (TRP) Introduction / re-wrap of concepts VST rz18

  2. 3/46 1 Physical transport phenomena /1 • Transfer of mass and/or energy in a system that is not in thermodynamic equilibrium, Transport processes (TRP) towards such equilibrium. • Systems are usually not very far away from equilbrium, which results in (practically) linear driving forces: transport = coefficient × driving force – heat flux (W/m 2 )= conductivity (W/m 2 .K)×temperature gradient (K/m)  "      T heat et cetera . VST rz18 4/46 1 Physical transport phenomena /2 • Continuum approach: a small volume dV where system properties Transport processes (TRP) are constant – For example dx = 0.1 µm  dV = 10 -21 m 3 still contains in liquid water ~10 6 molecules • Not considered here: cross-correlations such as – Mass transfer = coefficient × temperature gradient (“thermal diffusion”) – For example Seebeck effect, Peltier effect – See also so-called ”irreversible thermodynamics” VST rz18

  3. Fourier’s Law /1 • In a non-moving medium (i.e. a solid, or stagnant fluid) in the presence of a Transport processes (TRP) temperature gradient, heat is transferred from high to low temperature as a result of molecular movement: heat conduction (sv: värmeledning) • For a one-dimensional temperature gradient ΔT/Δx or dT/dx, Fourier’s Law gives the conductive heat transfer rate Q through a cross-sectional area A (m 2 ). If λ is a constant:  dT Q dT   2         Q A (W) Q " (W/m ) dx A dx with thermal conductivity λ, unit: W/(mK) Pictures: T06 (sv: termisk konduktivitet eller värmeledningsförmåga) VST rz18 Fourier’s Law /2 • For a general case with a 3-dimensional temperature ∆ gradient T = (∂T/∂x,∂T/∂y,∂T/∂z), Fourier’s Law gives . Transport processes (TRP) ∆ (for constant λ) for the heat flux Q” = - λ T • The temperature field inside the conducting medium can be written as T = T(t, x) with time t and 3-dimensional location vector x • For stationary (sv: stationärt, tidsinvariant) heat transfer ∂T/∂t = 0 at each position x • The heat transfer vector is perpendicular (sv: vinkelrätt) to the isothermal surfaces • Note that material property λ is, in fact, a Figure: KJ05 function of temperature: . . Q is a vector ∆ more accurately Q” = - λ(T)T ∆ with direction - T VST rz18

  4. Non-steady heat conduction • Non-steady or transient (sv: övergående) heat conduction through a stagnant medium depends not only on heat conductivity λ but also on heat capacity c Transport processes (TRP) (or c p , c v ). A general energy balance for mass m gives  T       Q Q m c in out  t . where in principle heat Q is a . 3-dimensional vector Q that creates (or is the result of !) a vector temperature gradient: (in Cartesian coordinates)      T T T     T , ,   Picture: ÖS96    x y z   VST rz18 Transient heat conduction 1-D /1 A = L·w • For 1-dimensional transient heat w conduction in a balance volume Transport processes (TRP) dV with mass dm = ρ·dV = ρ·A·dx : .  L   Q T Q         Q Q dm c dx in out   t x    T Q          with dm/dx ρ A A c   t x dx  T      with Fourier' s Law Q - A x  x   T       - A  2 2      T T T T  x                 c A A a    2 2 t x  t  x x VST rz18

  5. Transient heat conduction 1-D /2 A = L·w A = L·w w w • The initial and boundary conditions (sv: start- och randvillkor) determine a heat Transport processes (TRP) . . . L L transfer process Q Q Q • The three most important cases are : dx dx x x   1. Sudden change of surface temperatur e T T at t 0 : 0 1     T(x,0) T for t 0 and T(0, t) T for t 0 0 1 "   2. Sudden change of surface heat flux 0 Q at t 0 :  x 0  T(0, t) "      T(x,0) T for t 0 and - Q for t 0  0 x 0  x   3. Sudden change of surface convection 0 h at t 0 :  T(0, t)       T(x,0) T for t 0 and - h (T - T(0, t)) for t 0 0 surr  x VST rz18 Transient heat conduction 1-D /3 • Case 1: Assume a material with flat boundary at x=0, infinite length in x-direction, with T=T 0 at all x Transport processes (TRP) • At time t≥0 the temperature at x=0 is increased to T=T 1 and heat starts to enter (diffuse into) the material. At x→∞, T stays at T 0 . 2   T T  a  2 t  x  boundary and initial conditions Picture: BMH99 VST rz18

  6. Transient heat conduction 1-D /4 • With dimensionless variables θ = (T-T 0 )/(T 1 -T 0 ) Transport processes (TRP) and ξ = x / (4at) ½ this gives the following solution: x 4 at  T T 2  2      1   1 e d  T T  1 0 0 y 2  2     with e d erf ( y )  0 ÖS96: erf(x) ≈ 1 - exp(- 1.128x - 0.655x 2 - 0.063x 3 ) VST rz18 Transient heat conduction 1-D /5 • At x = 0 the slope of the penetration profile lines Transport processes (TRP) equals ∂T/∂x = -(T 1 -T 0 )/(πat) ½ where x = (πat) ½ is referred to as penetration depth. • Fourier number Fo is (for heat transfer) defined as Fo = at/d 2 = t /(d 2 /a)) for a medium with thickness d • Fo gives the ratio between time t and the penetration time d 2 /a • The penetration depth concept is valid for Fo < 0.1 Picture: BMH99 VST rz18

  7. Diffusion and heat conduction Transport processes (TRP) Fick’s Law Fourier’s Law • Heat conduction is in principle diffusion of heat • Since a ”temperature balance” does not exist, an energy balance must be used: T → ρc p T (unit: J/m 3 ) d ρ c T d ρ c T λ λ  p  p  Φ " - - a with thermal diffusivit y a heat , x ρ c dx dx ρ c p p VST rz18 Internal friction in fluid flow /1 Transport processes (TRP) • Diffusion of momentum subscript ”xy” means in y-direction in plane of fixed x • Kinematic viscosity = dynamic viscosity/density, ν = η/ρ   dv d v d v  y y y         - - - " momentum xy xy ,  dx dx dx VST rz18

  8. Internal friction in fluid flow /2 • Concentration, c, temperature, T, and energy, E, are scalars, and their gradient is a vector dc/dx or Transport processes (TRP)  c = (∂c/ ∂x, ∂c/ ∂y, ∂c/ ∂z), etc. • Velocity is a vector v, for example v = (v x , v y , v z ) and it’s gradient is a (second order) tensor: dv x /dy (gradient of v x in y-direction)    v   v v  y  x z note :      x x x     v   v v v   v v y x z   v y     x   z v . ( )    y y y      x y z  v     v v y x z       z z z  VST rz18 Internal friction in fluid flow /3 •  v results in compressive stresses  xx ,  yy and  zz and shear stresses  xy ,  xz ,  yz ,  zx ,  yx and Transport processes (TRP)  zy :   dv d v dv d v x x z z               etc. ; ; yx yz dy dy dy dy VST rz18

  9. Transport processes (TRP) Transport processes (TRP) The course book; are used for this Chapters 1 – 6 course VST rz18 VST rz18 18/46 1 17/46 1

  10. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 20/46 1 19/46 1

  11. Transport processes (TRP) Transport processes (TRP) BY the system. W > 0 if work is done Note here: VST rz18 VST rz18 22/46 1 21/46 1

  12. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 24/46 1 23/46 1

  13. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 26/46 1 25/46 1

  14. 27/46 1 Transport processes (TRP) Note: mass = density · volume m = ρ·V  dm = ρ·dV + dρ·V thus: dm = 0 ≠ dV =0 VST rz18 28/46 1 Transport processes (TRP) VST rz18

  15. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 30/46 1 29/46 1

  16. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 32/46 1 31/46 1

  17. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 34/46 1 33/46 1

  18. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 36/46 1 35/46 1

  19. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 38/46 1 37/46 1

  20. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 40/46 1 39/46 1

  21. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 42/46 1 41/46 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend