on a hidden structure in the mhv lagrangian
play

On a hidden structure in the MHV Lagrangian Piotr Kotko IFJ PAN - PowerPoint PPT Presentation

THE HENRYK NIEWODNICZASKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES On a hidden structure in the MHV Lagrangian Piotr Kotko IFJ PAN supported by: DEC-2013/10/E/ST2/00656 based on: P .K., A. Stasto, JHEP 1709 (2017) 047


  1. THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES On a hidden structure in the MHV Lagrangian Piotr Kotko IFJ PAN supported by: DEC-2013/10/E/ST2/00656 based on: P .K., A. Stasto, JHEP 1709 (2017) 047 REF2017, Madrid

  2. MOTIVATION Amplitudes in QCD • crucial ingredients of factorization approaches (collinear and High Energy (or k T ) Factorization) • a lot of progress has been made, especially at tree-level • Feynman diagrams (not efficient in general) • recurrence methods • geometry (eg. amplituhedron in supersymmetric theory) • still a tip of the iceberg 1

  3. MOTIVATION Amplitudes in QCD • crucial ingredients of factorization approaches (collinear and High Energy (or k T ) Factorization) • a lot of progress has been made, especially at tree-level • Feynman diagrams (not efficient in general) • recurrence methods • geometry (eg. amplituhedron in supersymmetric theory) • still a tip of the iceberg In this talk 1 We will forget about ordinary Feynman rules (in favor of much more effective Cachazo-Svrcek-Witten (CSW) rules). 2 I’ll discuss what’s truly hidden in the Lagrangian generating the CSW rules (the MHV Lagrangian – equivalent to standard Yang-Mills), and I’ll mention some consequences. 1

  4. On-shell Amplitudes (1) Collinear Factorization � dx A dx B � f a / A ( x A , µ ) f b / B ( x B , µ ) d σ ab → n ( x A , x B ) d σ AB → n + X ∼ x A x B a , b d σ ab → n ∼ |M| 2 dPS M – on-shell amplitude (on-shell limit of the amputated momentum space Green’s function) Gluon amplitudes: a 2 , ε λ 2 2 . . k 2 . M a 1 ... a n � � ε λ 1 1 , . . . , ε λ n = n k 1 a 1 , ε λ 1 1 a i – color index, ε λ i i – polarization vector of gluon with momentum k i and helicity λ i . Ward identities: M a 1 ... a n � � ε λ 1 1 , . . . , k i , . . . , ε λ n = 0 n 2

  5. On-shell Amplitudes (2) Selected methods of calculating on-shell amplitudes Tree-level techniques (some extended to NLO): • Berends-Giele recursion relations 1 • Britto-Cachazo-Feng-Witten (BCFW) recursion relations 2 • Cachazo-Svrcek-Witten (CSW) method 3 Specific for loop corrections: • integrand reduction method 4 • generalized unitarity 5 Automatization: • efficient computer codes for any tree-level amplitude • most amplitudes can be calculated automatically at NLO 1 F.A. Berends, W.T. Giele, Nucl.Phys. B306 (1988) 759-808 2 R. Britto, F. Cachazo, B. Feng, E. Witten, Phys.Rev.Lett. 94 (2005) 181602 3 F. Cachazo, P . Svrcek, E. Witten, JHEP 0409 (2004) 006 4 G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl.Phys. B763 (2007) 147-169 5 Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl.Phys. B425 (1994) 217; Nucl.Phys. B435 (1995) 59 3

  6. Off-shell Amplitudes (1) High Energy Factorization (HEF) � dx A dx B d 2 k TA d 2 k TB F g / A ( x A , k TA ) F g / B ( x B , k TB ) d σ g ∗ g ∗ → n ( x A , x B , k TA , k TB ) d σ AB → n + X ∼ x A x B k 2 k 2 A � 0 , B � 0 p A k A · · · . + . . . + . . . . . connected k A = x A p A + k TA k B · · · k B = x B p B + k TB p B 2 dPS � � � ˜ d σ g ∗ g ∗ → n ∼ � M � � ˜ M – off-shell gauge invariant amplitude. 4

  7. Off-shell Amplitudes (2) Methods of calculating off-shell amplitudes Tree-level techniques: • Lipatov’s effective action 1 • Analog of the Berends-Giele recursion relation (one off-shell leg) 2 • the “eikonalization” method 3 • Matrix Elements of straight infinite Wilson lines 4 • generalization of the BCFW recursion relations 5 Specific for loop corrections: • generalization of the “eikonalization” method to one loop 6 Automatization: • efficient computer code for any tree-level amplitude 7 1 E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135 2 A. van Hameren, P .K., K. Kutak, JHEP 1212 (2012) 029 3 A. van Hameren, PK, K. Kutak, JHEP 1301 (2013) 078 4 P .K., JHEP 1407 (2014) 128 5 A. van Hameren, JHEP 1407 (2014) 138, A. van Hameren, M. Serino, JHEP 1507 (2015) 010, K. Kutak, A. van Hameren, M. Serino, JHEP 1702 (2017) 009 6 A. van Hameren, arXiv:1710.07609 7 A. van Hameren, arXiv:1611.00680 5

  8. MHV amplitudes (1) The helicity amplitudes with growing complexity • Vanishing amplitudes: ( ± , + , . . . , +) • Maximally Helicity Violating (MHV) amplitudes: ( − , − , + . . . , +) • Next-to-MHV (NMHV) amplitudes ( − , − , − , + . . . , +) • Next-to-next-to-MHV (NNMHV) amplitudes, and so on... 6

  9. MHV amplitudes (1) The helicity amplitudes with growing complexity • Vanishing amplitudes: ( ± , + , . . . , +) • Maximally Helicity Violating (MHV) amplitudes: ( − , − , + . . . , +) • Next-to-MHV (NMHV) amplitudes ( − , − , − , + . . . , +) • Next-to-next-to-MHV (NNMHV) amplitudes, and so on... Color decomposition 1 M a 1 ... a n � � � � 1 λ 1 , . . . , n λ n � ε λ 1 1 , . . . , ε λ n Tr ( t a 1 . . . t a n ) M = n noncyclic permutations For example for four-point MHV amplitude M a 1 a 2 a 3 a 4 � � 2 , ε + 3 , ε + ε − 1 , ε − 4 + − − k 2 k 3 + k 3 k 2 M (1 − , 2 − , 3 + , 4 + ) = M (1 − , 3 + , 2 − , 4 + ) = and so on . + + k 1 k 4 k 1 k 4 − − 1 M.L. Mangano, S.J. Parke, Phys.Rep. 200 301-367 6

  10. MHV amplitudes (3) Spinor algebra • Spinor products ˙ i λ β β ˜ i ˜ β � ij � = u − ( k i ) u + ( k j ) ≡ ǫ αβ λ α λ ˙ α [ ij ] = u + ( k i ) u − ( k j ) ≡ ǫ ˙ j , λ α ˙ j i ≡ u + ( k i ) , ˜ where u ± ( k i ) = 1 λ ˙ 2 ( 1 ± γ 5 ) u ( k i ) and λ α α i ≡ u − ( k i ) . i ˜ λ ˙ Momenta k i are light-like. One can express ( k i ) α ˙ α = λ α α i . 7

  11. MHV amplitudes (3) Spinor algebra • Spinor products ˙ i λ β β ˜ i ˜ β � ij � = u − ( k i ) u + ( k j ) ≡ ǫ αβ λ α λ ˙ α [ ij ] = u + ( k i ) u − ( k j ) ≡ ǫ ˙ j , λ α ˙ j i ≡ u + ( k i ) , ˜ where u ± ( k i ) = 1 λ ˙ 2 ( 1 ± γ 5 ) u ( k i ) and λ α α i ≡ u − ( k i ) . i ˜ λ ˙ Momenta k i are light-like. One can express ( k i ) α ˙ α = λ α α i . • Polarization vectors q ˜ ˜ λ α λ ˙ α λ ˙ q λ α α √ √ � � i i ε + ( ε − α = i ) α ˙ α = 2 � qi � , 2 i [ iq ] α ˙ where q is a null reference momentum. 7

  12. MHV amplitudes (3) Spinor algebra • Spinor products ˙ i λ β β ˜ i ˜ β � ij � = u − ( k i ) u + ( k j ) ≡ ǫ αβ λ α λ ˙ α [ ij ] = u + ( k i ) u − ( k j ) ≡ ǫ ˙ j , λ α ˙ j i ≡ u + ( k i ) , ˜ where u ± ( k i ) = 1 λ ˙ 2 ( 1 ± γ 5 ) u ( k i ) and λ α α i ≡ u − ( k i ) . i ˜ λ ˙ Momenta k i are light-like. One can express ( k i ) α ˙ α = λ α α i . • Polarization vectors q ˜ ˜ λ α λ ˙ α λ ˙ α q λ α √ √ � � i i ε + ( ε − α = i ) α ˙ α = 2 � qi � , 2 i [ iq ] α ˙ where q is a null reference momentum. Parke-Taylor amplitudes 1 � 12 � 4 � 1 − , 2 − , 3 + , . . . , n + � M = � 12 � � 23 � . . . � n 1 � 1 S.J. Parke, T.R. Taylor, Phys.Rev.Lett. 56, 2459 (1986) 7

  13. Off-shell gauge invariant MHV amplitudes Suprising result One off-shell leg pocess g ∗ g → g . . . g 1 M − 1 M − 2 N − m − 1 + + . . . + M N − m m m N − m − k k m = 1 m = 1 k = 1 . . . . . . . . . . . . . . . . . . � 1 ∗ 2 � 4 � 1 ∗ , 2 − , 3 + , . . . , n + � M g ∗ g → g ... g ∼ � 1 ∗ 2 �� 23 �� 34 � . . . � n − 1 n �� n 1 ∗ � Spinor products for off-shell states involve only longitudinal component of the off-shell momentum � 1 ∗ i � = � p 1 i � , where k 1 = p 1 + k T 1 , k 2 1 � 0, p 2 1 = 0. Similar formula holds for g ∗ g ∗ → g . . . g 2 . Note: it is essential that the amplitude is gauge invariant, otherwise we get a mess! 1 A. van Hameren, P .K., K. Kutak, JHEP 1212 (2012) 029 2 A. van Hameren, JHEP 1407 (2014) 138 8

  14. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. 9

  15. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. Off-shell continuation of spinors If k is light-like, we have α = λ k α ˜ α ˜ λ ˙ α k α ˙ λ k ˙ = ⇒ λ k α = k α ˙ q / [ kq ] α where q is auxiliary light-like momentum. If k is off-shell we define the off-shell continuation of spinor in the same way: λ ( ∗ ) α ˜ λ ˙ α k α = k α ˙ q 9

  16. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. Off-shell continuation of spinors If k is light-like, we have α = λ k α ˜ α ˜ λ ˙ α k α ˙ λ k ˙ = ⇒ λ k α = k α ˙ q / [ kq ] α where q is auxiliary light-like momentum. If k is off-shell we define the off-shell continuation of spinor in the same way: λ ( ∗ ) α ˜ λ ˙ α k α = k α ˙ q MHV vertices + i − . . . + � ij � 4 . . . . . � 12 � � 23 � . . . � n 1 � ≡ . + . . . j − + The spinor products are made from off-shell spinors � ij � = ǫ αβ λ ( ∗ ) α λ ( ∗ ) β . i j 9

  17. Cachazo-Svrcek-Witten (CSW) Method (2) Example: NMHV amplitude M ( 1 − , 2 − , 3 − , 4 + , 5 + ) 2 − 2 − 2 − 1 − 1 − 3 − 3 − + + = 3 − − 1 − − 5 + 4 + 4 + 5 + 4 + 5 + 2 − 2 − 1 − 3 − 1 − 3 − − + + − 4 + 4 + 5 + 5 + 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend