more than mhv amplitudes in qcd
play

more-than-MHV amplitudes in QCD Simon Badger 18th March 2016 - PowerPoint PPT Presentation

more-than-MHV amplitudes in QCD Simon Badger 18th March 2016 MHV@30, Fermilab, 16th-19th March 2016 helicity amplitudes MHV UHV n ) n + -n - -6 -4 -2 2 4 6 [L. Dixon] vanish at tree-level and to all loops in super-symmetric


  1. more-than-MHV amplitudes in QCD Simon Badger 18th March 2016 MHV@30, Fermilab, 16th-19th March 2016

  2. helicity amplitudes MHV “UHV” n ) n + -n - -6 -4 -2 2 4 6 [L. Dixon] vanish at tree-level and to all loops in super-symmetric theories

  3. Modelling hadron collisions New physics backgrounds Hadronisation P a S r t h o o n PDF w e Hadronisation r S P h a o r Keeping theory predictions in t w o e n r line with experimental data Hadronisation S P h next frontier: NNLO 2 → 3 a o r w t o e n r Parton Shower PDF Hadronisation Determination of SM parameters

  4. spurious singularities 10 6 numerical D-dimensional analytic generalised unitarity numerical 10 5 vs 10 4 analytic computation with finite integrals basis #points (e.g. Bern, Dixon, Kosower 10 3 [hep-ph/9302280]) 10 2 removing spurious poles also simplifies coefficients ⇒ faster 10 1 (~100x in this case) NJet gg → 3 g 10 0 − 16 − 14 − 12 − 10 − 8 − 6 − 4 − 2 0 accuracy (digits) need to switch to quadruple precision evaluation applications of loop amplitudes in NNLO computations more intensive

  5. one-loop finite amplitudes in QCD all multiplicity expressions! • Off-shell currents for one-loop amplitudes to O ( ✏ 0 ) [Mahlon (1993)] • all-plus ↔ N = 4 D-dimensional unitarity cuts [Bern, Dixon, Dunbar, Kosower (1996)] • BCFW recursion for O ( ✏ 0 ) [Bern, Dixon, Kosower (2005)] • CSW(MHV) rules for D-dimensional integrands [Elvang, Freedman, Kiermaier (2012)]

  6. outline • d-dimensional generalised unitarity ⇒ multi-loops from trees • two-loop all-plus amplitudes • local integrands in d-dimensional amplitudes

  7. automated one-loop amplitudes solving on-shell conditions requires complex momenta ⇒ factorise residues into tree amplitudes Unitarity: double cuts [BDDK ’94] [triple cuts BDK ’97] Integrand reduction [OPP ’05] Generalized unitarity: ∆ 3 = − quadruple cuts [BCF ’04] D-dim. generalized unitarity [GKM ’08] triple cuts [e.g. Forde ’07] ∆ i ( k, p ) Z multi-scale X A = X kinematic algebra (propagators) i A = (rational) i (integral) i k i performed i numerically find complex contour to isolate explicitly remove poles integral coefficient

  8. multi-loop amplitudes from trees Integrand reduction via Maximal unitarity polynomial division [Kosower, Larsen, Johansson, Caron-Huot, Zhang, Søgaard] [Mastrolia, Ossola, SB, Frellesvig, Zhang, Mirabella, Peraro, Malamos, Kleiss, Papadopolous, Verheyen, Feng, Huang] e.g. IBPs ∆ i ( k, p ) Z X X A = A = (rational) i (integral) i (propagators) i k i i IBPs must be free of [Gluza, Kosower, Kajda 1009.0472] [Schabinger 1111.4220] doubled propagator MI [Ita 1510.05626] [Larsen, Zhang 1511.01071]

  9. a toolbox for multi-loop integrands six-dimensional momentum twistors spinor-helicity [Hodges (2009)] ∆ i ( k, p ) Z X A = (propagators) i k i generalised unitarity integrand reduction cuts colour/kinematics C ( ∆ i ) ∆ i X Q D α A = S i BCJ relations i

  10. multi-loop integrand reduction [Mastrolia, Ossola 1107.6041] [SB, Frellesvig, Zhang 1202.2019] [Zhang 1205.5707] [Mastrolia, Mirabella, Ossola, Peraro 1205.7087] ISP monomials c T ; α 1 ... α n ( k 1 · p 5 ) α 1 ( k 2 · p 2 ) α 2 . . . ( k 1 · ω 2 ) α m . . . µ α n X ∆ T ( { k } ) = 12 { α } extra-dimensional ISPs spurious directions rational coefficients µ ij = − k − 2 ✏ · k − 2 ✏ i j

  11. integrand reduction � � ∆ c ; T 0 � � A (0) Y X ∆ c ; T � � = − i Q l ∈ T 0 /T D l � � � � i T 0 cut cut on-shell the numerators can be written as products of fix basis of monomials in tree-level amplitudes irreducible scalar products via polynomial division (Gröbner basis) integrand parameterisations not unique - freedom in the choices of ISP monomials

  12. six-dimensional trees six dimensional spinor helicity [Cheung, O’Connell 0902.0981] (one-loop applications [Bern at al. 1010.0494] [Davies 1108.0398]) dimensional reduction to using additional scalar amplitudes 4 − 2 ✏ 6D is a convenient way to manage all helicities simultaneously · d ) = i A (1 a ˙ a , 2 b ˙ b , 3 d ˙ d , 4 d ˙ st h 1 a 2 b 3 c 4 d i [1 ˙ a 2 ˙ b 3 ˙ c 4 ˙ d ]

  13. General colour decompositions [Dixon, Del Duca, Maltoni (1999)] Inserting the DDM � m − → σ decomposition σ | σ | = m into colour dressed ( a ) ( cuts leads to a compact loop � σ 2 − → decomposition σ 1 , σ 2 | σ 1 ∪ σ 2 | = m σ 1 m ( b ) ( σ 3 σ 3 � − → + σ 2 σ 2 σ 1 , σ 2 , σ 3 | σ 1 ∪ σ 2 ∪ σ 3 | = m m σ 1 σ 1 ( a ) ( general tree-level DDM colour bases including fermions [Johansson, Ochirov arXiv:1507.00332]

  14. non-planar from planar e.g. [Bern, Carrasco, Dixon, Johansson, Roiban 1201.5366] A 4 (1 , 2 , 3 , 4) = s 13 A 4 (1 , 3 , 2 , 4) see talks by Carrasco and Johansson s 12 factorization st i ) � A 3 (1 , 2 , � P 12 ) A 3 ( P 12 , 3 , 4) = Res s 12 =0 ( A 4 (1 , 2 , 3 , 4)) = s 13 A 4 (1 , 3 , 2 , 4) � s 12 =0 � � st i ) 4) = � ( k 1 − P 123 ) 2 � � ( k 1 + k 2 + p 3 ) 2 ◆� ◆◆ � ✓ ✓ ✓ ◆ ✓ ◆ ✓ � � st i ) ( k 1 − P 123 ) 2 ∆ = + ∆ ∆ − ∆ � � � � � � cut cut

  15. applications: all-plus amplitudes in QCD

  16. one-loop 4pt all-plus + + ⇢ ✓ ◆ � D s � 2 [ µ 2 = h 12 ih 23 ih 34 ih 41 i { � st } · 11 ] I + + + + D s � 2 � st = + O ( ✏ ) h 12 ih 23 ih 34 ih 41 i 6 + + [Bern, Kosower (1991)]

  17. one-loop 4pt single minus + - ( ✓ ◆ ✓ ◆ [ µ 2 = ~ c · 11 ] , I [ µ 11 ] , I + + ✓ ◆ ✓ ◆ [ µ 11 ] , I [ µ 11 ] , I ) � � � � [ µ 11 ] , I [ µ 11 ] I ( D s � 2)[24] 2 u , s 2 t 2 u 2 , t 2 ( s � u ) , s 2 ( t � u ) ⇢ st � , � t ( t � u ) , � s ( s � u ) ~ c = [12] h 23 ih 34 i [41] u 2 u 2 tu su [Bern, Morgan (1995)] + - ( D s � 2)[24] 2 u = 6 + O ( ✏ ) [12] h 23 ih 34 i [41] + + [Bern, Kosower (1991)]

  18. one-loop 5pt all-plus + + ( ✓ ◆ + [ µ 2 = ~ c · 11 ] , I + + ) ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ [ µ 2 [ µ 2 [ µ 2 [ µ 2 [ µ 2 11 ] , I 11 ] , I 11 ] , I 11 ] , I 11 ] I ( D s � 2) c = h 12 ih 23 ih 34 ih 45 ih 51 i tr 5 (1234) { � s 12 s 23 s 34 s 45 s 51 , ~ s 12 s 23 tr − (1345) , s 23 s 34 tr − (2451) , s 34 s 45 tr − (3512) , s 45 s 51 tr − (4123) , s 51 s 12 tr − (5234) } [Bern, Morgan (1995)] + + = ( D s � 2) s 12 s 23 + s 23 s 34 + s 34 s 45 + s 45 s 51 + s 51 s 12 + tr 5 (1234) + + O ( ✏ ) 6 h 12 ih 23 ih 34 ih 45 ih 51 i + + [Bern, Dixon, Kosower (1993)]

  19. one-loop 5pt all-plus ∆ (1) (1 + , 2 + , 3 + , . . . , n + ) = D s � 2 h 12 i 4 µ 2 11 ∆ (1) , [ N =4] (1 − , 2 − , 3 + , . . . , n + ) [Bern, Dixon, Dunbar, Kosower (1996)] + + ( + ✓ ◆ [ µ 3 = ~ c · 11 ] , I + + ) ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ [ µ 2 [ µ 2 [ µ 2 [ µ 2 [ µ 2 11 ] , I 11 ] , I 11 ] , I 11 ] , I 11 ] I ( D s � 2) c = h 12 ih 23 ih 34 ih 45 ih 51 i { 2tr 5 (1234) , s 12 s 23 , s 23 s 34 , s 34 s 45 , s 45 s 51 , s 51 s 12 } ~

  20. two-loop 4pt all-plus (drop Parke-Taylor [Bern, Dixon, Kosower (2000)] pre-factors from now on....) + + 0 1 ⇣ ⌘ ⇣ ⌘ s +( l 1 + l 2 ) 2 A [ F 1 ] , I = { s 2 t, t 2 s, st } · { I [ F 1 ] , I [ F 2 + F 3 ] } @ s + + µ 11 µ 22 + ( µ 11 + µ 22 ) 2 + 2( µ 11 + µ 22 ) µ 12 + 16( µ 2 � � F 1 = ( D s � 2) 12 � µ 11 µ 22 ) , dimension shifting F 2 = 4( D s � 2)( µ 11 + µ 22 ) µ 12 , numerators F 3 = ( D s � 2) 2 µ 11 µ 22 .

  21. two-loop 5pt all-plus [SB, Frellesvig, Zhang (2013)] + + ( + ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ X = + ∆ + ∆ + ∆ ∆ cyclic + + ⌘ ) ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ + ∆ + ∆ + ∆ + ∆ = s 12 s 23 s 45 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ∆ { s 34 s 45 s 15 , tr + (1345) } · { I [ F 1 ] , I [ F 1 ] } tr 5 = { − s 34 s 2 45 tr + (1235) ⇣ ⌘ ⇣ ⌘ ∆ } · { I [ F 1 ] } tr 5 = { s 12 s 23 s 34 s 45 s 15 ⇣ ⌘ ⇣ ⌘ } · { I [ F 1 ] } ∆ tr 5 = − s 12 tr + (1345) ⇣ ⌘ ∆ { s 23 , 1 } · { 2 s 13 ⇣ ⌘ ⇣ ⌘ s 45 +( l 1 + l 2 ) 2 s 45 +( l 1 + l 2 ) 2 [ F 2 + F 3 ] , I [(2 k 1 · ! )( F 2 + F 3 )] } I s 45 s 45 = { − ( s 45 − s 12 )tr + (1345) ⇣ ⌘ ⇣ ⌘ s 45 +( l 1 + l 2 ) 2 } · { I [ F 2 + F 3 ] } ∆ s 45 2 s 13 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ [ F 3 ( l 1 + l 2 ) 2 ] , = ~ c · { I [ F 2 ] , I [ F 3 ] , I ∆ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ [ F 3 ( k 1 · 3)( k 2 · 3)] , I [ F 3 ( k 1 · 3)] , I [ F 3 ( k 2 · 3)] , . . . } I

  22. two-loop 5pt all-plus ∆ (2) (1 + , 2 + , 3 + , . . . , n + ) = D s � 2 h 12 i 4 F 1 ∆ (2) , [ N =4] (1 − , 2 − , 3 + , . . . , n + ) + (1-loop) 2 all genuine two-loop topologies related to N =4 MHV non-planar cuts via BCJ A (2) 5 (1 + , 2 + , 3 + , 4 + , 5 + )= " ◆ [SB, Mogull, Ochirov, O’Connell (2015)] ✓ 1 ✓ ◆ ✓ ◆ + 1 ✓ ◆ X I C 2 ∆ + ∆ 2 ∆ σ ∈ S 5 ! ✓ ◆ ✓ ◆ ✓ ◆ +1 + 1 + ∆ 2 ∆ 2 ∆ ◆ complete BCJ numerator ✓ ✓ ◆ ✓ ◆ ✓ ◆ 1 + 1 + 1 + C 4 ∆ 2 ∆ 2 ∆ representation ! ✓ ◆ ✓ ◆ + 1 − ∆ 4 ∆ [Mogull, O’Connell (2015)] ◆ !# ✓ ✓ ◆ ✓ ◆ ✓ ◆ 1 + 1 + 1 + C 4 ∆ 2 ∆ 2 ∆

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend