the high multiplicity frontier for two loop qcd
play

The high-multiplicity frontier for two-loop QCD Background - PowerPoint PPT Presentation

. Mao Zeng 29 October 2018 Institute for Theoretical Physics, ETH Zurich . 1 The high-multiplicity frontier for two-loop QCD Background Numerical unitarity for 2-loop amplitudes Difgerential equations at high multiplicity


  1. . Mao Zeng 29 October 2018 Institute for Theoretical Physics, ETH Zurich . 1 The high-multiplicity frontier for two-loop QCD

  2. • Background • Numerical unitarity for 2-loop amplitudes • Difgerential equations at high multiplicity • Future outlook 2 Outline

  3. • Background • Numerical unitarity for 2-loop amplitudes • Difgerential equations at high multiplicity • Future outlook 2 Outline

  4. • Background • Numerical unitarity for 2-loop amplitudes • Difgerential equations at high multiplicity • Future outlook 2 Outline

  5. • Background • Numerical unitarity for 2-loop amplitudes • Difgerential equations at high multiplicity • Future outlook 2 Outline

  6. . . Phys. Rev. Lett. 119, 142001, arXiv:1703.05273, S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, MZ . . Phys. Rev. D. 97, 116014, arXiv:1712.03946, S. Abreu, F. Febres Cordero, H. Ita, B. Page, MZ . . arXiv:1807.11522, Samuel Abreu, Ben Page, MZ 3 Main references

  7. . Background

  8. • Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers) • NNLO needed for percent-level accuracy. explosion of 2 2 calculations. (amplitudes + subtractions) • Beginning to break the 2 3 barrier! 4 Precision QCD • ∼ 140 ħb − 1 of data from LHC Run 2. ⇒ Precision measurements and BSM searches. . =

  9. • Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers) • NNLO needed for percent-level accuracy. explosion of 2 2 calculations. (amplitudes + subtractions) • Beginning to break the 2 3 barrier! 4 Precision QCD • ∼ 140 ħb − 1 of data from LHC Run 2. ⇒ Precision measurements and BSM searches. . =

  10. • Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers) • NNLO needed for percent-level accuracy. (amplitudes + subtractions) • Beginning to break the 2 3 barrier! 4 Precision QCD • ∼ 140 ħb − 1 of data from LHC Run 2. ⇒ Precision measurements and BSM searches. . = → explosion of 2 → 2 calculations.

  11. • Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers) • NNLO needed for percent-level accuracy. (amplitudes + subtractions) 4 Precision QCD • ∼ 140 ħb − 1 of data from LHC Run 2. ⇒ Precision measurements and BSM searches. . = → explosion of 2 → 2 calculations. • Beginning to break the 2 → 3 barrier!

  12. production. 5 NNLO 2 → 3 processes • pp → 3 j : constrains strong coupling constant α s . • pp → H + 2 j : gluon-fusion background for VBF Higgs g g m t → ∞ H t g g • Many more: V + 2 j , V + V ′ + j , t ¯ t + j . . .

  13. • Master integrals: analytic / numerical evaluation • Phenomenology: need sophisticated IR subtraction. • Loop integrand: too many Feynman diagrams • Integral reduction / IBP: explosion of analytic complexity, 5 kinematic scales Degree- d polynomial in n variables: d n n terms. 6 Challenges for 2 → 3 at two loops

  14. • Phenomenology: need sophisticated IR subtraction. • Loop integrand: too many Feynman diagrams • Integral reduction / IBP: explosion of analytic Degree- d polynomial in n variables: n terms. • Master integrals: analytic / numerical evaluation 6 Challenges for 2 → 3 at two loops complexity, ≥ 5 kinematic scales ( ) d + n

  15. • Loop integrand: too many Feynman diagrams • Integral reduction / IBP: explosion of analytic Degree- d polynomial in n variables: n terms. • Phenomenology: need sophisticated IR subtraction. 6 Challenges for 2 → 3 at two loops complexity, ≥ 5 kinematic scales ( ) d + n • Master integrals: analytic / numerical evaluation

  16. • Loop integrand: too many Feynman diagrams • Integral reduction / IBP: explosion of analytic Degree- d polynomial in n variables: n terms. • Phenomenology: need sophisticated IR subtraction. 6 Challenges for 2 → 3 at two loops complexity, ≥ 5 kinematic scales ( ) d + n • Master integrals: analytic / numerical evaluation

  17. . Numerical unitarity for 2-loop amplitudes

  18. 7 Example: NLO pp high-multiplicity limit! Polynomial complexity, faster than analytic results in [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren, 2013] 5 j (BlackHat & Sherpa) . l 5 j W Madgraph, NJet, OpenLoops, Recola … Hugely successful at one loop, "NLO revolution". BlackHat, GoSam, HELAC-1Loop/CutTools, Forde, Ita, Kosower, Maitre, 2008 … Berger, Bern, Dixon, Febres Cordero, Giele, Kunszt, Melnikov, 2008 Ellis, Giele, Kunszt, 2007 Ossola, Papadopoulos, Pittau, 2006 Figure 1: arXiv:0803.4180 Numerical unitarity: one loop

  19. Hugely successful at one loop, "NLO revolution". Figure 1: arXiv:0803.4180 Ossola, Papadopoulos, Pittau, 2006 Ellis, Giele, Kunszt, 2007 Giele, Kunszt, Melnikov, 2008 Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre, 2008 … BlackHat, GoSam, HELAC-1Loop/CutTools, Madgraph, NJet, OpenLoops, Recola … [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren, 2013] Polynomial complexity, faster than analytic results in high-multiplicity limit! 7 Numerical unitarity: one loop Example: NLO pp → W + 5 j → l ¯ ν + 5 j (BlackHat & Sherpa) .

  20. from discrete Fourier • Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms • Fixing coeffjcients in decomposition: On cut surface, integrand factorizes into tree amplitudes (Berends-Giele recursion) Figure 2: arXiv:0803.4180 Fix n coeffjcients from n sample points. Inversion of linear system transform 8 Overview of one-loop numerical unitarity

  21. from discrete Fourier • Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms integrand factorizes into tree amplitudes (Berends-Giele recursion) Figure 2: arXiv:0803.4180 Fix n coeffjcients from n sample points. Inversion of linear system transform 8 Overview of one-loop numerical unitarity • Fixing coeffjcients in decomposition: On cut surface,

  22. • Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms integrand factorizes into tree amplitudes (Berends-Giele recursion) Figure 2: arXiv:0803.4180 Fix n coeffjcients from n sample points. Inversion of linear system transform 8 Overview of one-loop numerical unitarity • Fixing coeffjcients in decomposition: On cut surface, from discrete Fourier

  23. • High-precision floating point for direct calculation 3. Effjcient and stable numerical fitting of integral 1. OPP-like minimal ansatz: Masters + surface terms. • Produce master coeffjcients w/o external IBP reduction • No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017] 2. Versatility: Berends-Giele recursion allows any vertices coeffjcients (top to bottom) & regulator dependence • Finite-field arithmetic for functional reconstruction 9 Design goals of 2-loop numerical unitarity

  24. • High-precision floating point for direct calculation 3. Effjcient and stable numerical fitting of integral 1. OPP-like minimal ansatz: Masters + surface terms. • Produce master coeffjcients w/o external IBP reduction • No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017] 2. Versatility: Berends-Giele recursion allows any vertices coeffjcients (top to bottom) & regulator dependence • Finite-field arithmetic for functional reconstruction 9 Design goals of 2-loop numerical unitarity

  25. • High-precision floating point for direct calculation 3. Effjcient and stable numerical fitting of integral 1. OPP-like minimal ansatz: Masters + surface terms. • Produce master coeffjcients w/o external IBP reduction • No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017] 2. Versatility: Berends-Giele recursion allows any vertices coeffjcients (top to bottom) & regulator dependence • Finite-field arithmetic for functional reconstruction 9 Design goals of 2-loop numerical unitarity

  26. • High-precision floating point for direct calculation 3. Effjcient and stable numerical fitting of integral 1. OPP-like minimal ansatz: Masters + surface terms. • Produce master coeffjcients w/o external IBP reduction • No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017] 2. Versatility: Berends-Giele recursion allows any vertices coeffjcients (top to bottom) & regulator dependence • Finite-field arithmetic for functional reconstruction 9 Design goals of 2-loop numerical unitarity

  27. • High-precision floating point for direct calculation • Finite-field arithmetic for functional reconstruction 1. OPP-like minimal ansatz: Masters + surface terms. • Produce master coeffjcients w/o external IBP reduction • No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017] 2. Versatility: Berends-Giele recursion allows any vertices coeffjcients (top to bottom) & regulator dependence 9 Design goals of 2-loop numerical unitarity 3. Effjcient and stable numerical fitting of integral

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend