integrand reduction for five parton two loop scattering
play

Integrand reduction for five-parton two-loop scattering amplitudes - PowerPoint PPT Presentation

Integrand reduction for five-parton two-loop scattering amplitudes in QCD High Precision for Hard Processes Christian Brnnum-Hansen in collaboration with Simon Badger, Bayu Hartanto, and Tiziano Peraro 1/15 Christian Brnnum-Hansen High


  1. Integrand reduction for five-parton two-loop scattering amplitudes in QCD High Precision for Hard Processes Christian Brønnum-Hansen in collaboration with Simon Badger, Bayu Hartanto, and Tiziano Peraro 1/15 Christian Brønnum-Hansen High Precision for Hard Processes

  2. some desired processes at NNLO QCD pp → H + 2 jets pp → γγ + jet pp → 3 jets Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report 2/15 Christian Brønnum-Hansen High Precision for Hard Processes

  3. some desired processes at NNLO QCD pp → H + 2 jets pp → γγ + jet pp → 3 jets Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report 2/15 Christian Brønnum-Hansen High Precision for Hard Processes

  4. some desired processes at NNLO QCD pp → H + 2 jets pp → γγ + jet pp → 3 jets Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report measurement of strong coupling from jet ratio pp → 3 j pp → 2 j α S ( m Z ) = 0 . 1148 ± 0 . 0014 (exp.) ± 0 . 0018 (PDF) ± 0 . 0050 (theory) CMS Collaboration @ 7 TeV: arXiv:1304.7498 2/15 Christian Brønnum-Hansen High Precision for Hard Processes

  5. all-plus sector including non-planar contribution long known • A two-loop five-gluon helicity amplitude in QCD Badger, Frellesvig, and Zhang 2013 • A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory Badger, Mogull, Ochirov, and O’Connell 2015 • Analytic form of the two-loop planar five-gluon all-plus helicity amplitude in QCD Gehrmann, Henn, and Lo Presti 2015 • Local integrands for two-loop all-plus Yang-Mills amplitudes Badger, Mogull, and Peraro 2016 3/15 Christian Brønnum-Hansen High Precision for Hard Processes

  6. all-plus sector including non-planar contribution long known • A two-loop five-gluon helicity amplitude in QCD Badger, Frellesvig, and Zhang 2013 • A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory Badger, Mogull, Ochirov, and O’Connell 2015 • Analytic form of the two-loop planar five-gluon all-plus helicity amplitude in QCD Gehrmann, Henn, and Lo Presti 2015 • Local integrands for two-loop all-plus Yang-Mills amplitudes Badger, Mogull, and Peraro 2016 several recent results • A first look at two-loop five-gluon amplitudes in QCD Badger, CBH, Hartanto, and Peraro 2017 • Planar two-loop five-gluon amplitudes from numerical unitarity Abreu, Febres-Cordero, Ita, Page, and Zeng 2017 • Planar two-loop five-parton amplitudes from numerical unitarity Abreu, Febres-Cordero, Ita, Page, and Sotnikov 2018 • Two-loop five-point massless QCD amplitudes within the IBP approach Chawdhry, Lim, and Mitov 2018 3/15 Christian Brønnum-Hansen High Precision for Hard Processes

  7. leading colour gluon contribution � tr ( T a σ (1) · · · T a σ (5) ) A (2) (1 , 2 , 3 , 4 , 5) = σ ∈ S 5 / Z 5 × A (2) ( σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) (1) 4/15 Christian Brønnum-Hansen High Precision for Hard Processes

  8. leading colour gluon contribution � tr ( T a σ (1) · · · T a σ (5) ) A (2) (1 , 2 , 3 , 4 , 5) = σ ∈ S 5 / Z 5 × A (2) ( σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) (1) colour-ordered amplitude � � � ∆ T ( { k } , { p } ) A (2) (1 , 2 , 3 , 4 , 5) = � (2) α ∈ T D α T 4/15 Christian Brønnum-Hansen High Precision for Hard Processes

  9. leading colour gluon contribution � tr ( T a σ (1) · · · T a σ (5) ) A (2) (1 , 2 , 3 , 4 , 5) = σ ∈ S 5 / Z 5 × A (2) ( σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) (1) colour-ordered amplitude � � � ∆ T ( { k } , { p } ) A (2) (1 , 2 , 3 , 4 , 5) = � (2) α ∈ T D α T sum over planar topologies 4/15 Christian Brønnum-Hansen High Precision for Hard Processes

  10. leading colour gluon contribution � tr ( T a σ (1) · · · T a σ (5) ) A (2) (1 , 2 , 3 , 4 , 5) = σ ∈ S 5 / Z 5 × A (2) ( σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) (1) irreducible numerator colour-ordered amplitude � � � ∆ T ( { k } , { p } ) A (2) (1 , 2 , 3 , 4 , 5) = � (2) α ∈ T D α T sum over planar topologies 4/15 Christian Brønnum-Hansen High Precision for Hard Processes

  11. leading colour gluon contribution � integrand reduction tr ( T a σ (1) · · · T a σ (5) ) A (2) (1 , 2 , 3 , 4 , 5) = Ossola, Papadopoulos, Pittau, σ ∈ S 5 / Z 5 Mastrolia, Badger, Frellesvig, × A (2) ( σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) Zhang, Peraro, Mirabella, (1) irreducible numerator . . . (2005-) colour-ordered amplitude � � � ∆ T ( { k } , { p } ) A (2) (1 , 2 , 3 , 4 , 5) = � (2) α ∈ T D α T sum over planar topologies 4/15 Christian Brønnum-Hansen High Precision for Hard Processes

  12. 57 topologies, 425 irreducible numerators. examples: pentabox, maximal topology bubble insertion, maximal topology divergent cut Abreu, Febres Cordero, Ita, Jaquier, and Page 2017 (one-loop) 2 5/15 Christian Brønnum-Hansen High Precision for Hard Processes

  13. reconstruct integrand from d -dimensional unitarity cuts � � � � ∆ = Cut (3) 6/15 Christian Brønnum-Hansen High Precision for Hard Processes

  14. reconstruct integrand from d -dimensional unitarity cuts � � � � ∆ = Cut (3) generalised unitarity cuts Bern, Rozowsky, Yan, Dixon, Kosower, de Freitas, Wong, . . . 1997- 6/15 Christian Brønnum-Hansen High Precision for Hard Processes

  15. reconstruct integrand from d -dimensional unitarity cuts � � � � ∆ = Cut (3) finite field reconstruction Peraro 2016 generalised unitarity cuts Bern, Rozowsky, Yan, Dixon, Kosower, de Freitas, Wong, . . . 1997- 6/15 Christian Brønnum-Hansen High Precision for Hard Processes

  16. reconstruct integrand from d -dimensional unitarity cuts � � � � ∆ = Cut (3) finite field reconstruction Peraro 2016 generalised unitarity cuts Bern, Rozowsky, Yan, Dixon, Kosower, Berends-Giele recursion & de Freitas, Wong, . . . 1997- six-dimensional spinor-helicity Cheung, O’Connell 2009 6/15 Christian Brønnum-Hansen High Precision for Hard Processes

  17. reconstruct integrand from d -dimensional unitarity cuts � � � � ∆ = Cut (3) finite field reconstruction Peraro 2016 momentum twistors Hodges 2009 generalised unitarity cuts Bern, Rozowsky, Yan, Dixon, Kosower, Berends-Giele recursion & de Freitas, Wong, . . . 1997- six-dimensional spinor-helicity Cheung, O’Connell 2009 6/15 Christian Brønnum-Hansen High Precision for Hard Processes

  18. split loop momentum in parallel and perpendicular components k i = k � , i + k ⊥ , i (4) 7/15 Christian Brønnum-Hansen High Precision for Hard Processes

  19. split loop momentum in parallel and perpendicular components k i = k � , i + k ⊥ , i (4) k � , i = � a ij p j , a ij = a ij ( k i · p j ) 7/15 Christian Brønnum-Hansen High Precision for Hard Processes

  20. split loop momentum in parallel and perpendicular components k i = k � , i + k ⊥ , i (4) k � , i = � a ij p j , k [4] ⊥ , i + k [ − 2 ǫ ] a ij = a ij ( k i · p j ) ⊥ , i 7/15 Christian Brønnum-Hansen High Precision for Hard Processes

  21. split loop momentum in parallel and perpendicular components k i = k � , i + k ⊥ , i (4) k � , i = � a ij p j , k [4] ⊥ , i + k [ − 2 ǫ ] a ij = a ij ( k i · p j ) ⊥ , i ⊥ , i = � b ij ω j , k [4] b ij = b ij ( k i · ω j ) 7/15 Christian Brønnum-Hansen High Precision for Hard Processes

  22. split loop momentum in parallel and perpendicular components k i = k � , i + k ⊥ , i (4) k � , i = � a ij p j , k [4] ⊥ , i + k [ − 2 ǫ ] a ij = a ij ( k i · p j ) ⊥ , i ⊥ , i = � b ij ω j , k [4] b ij = b ij ( k i · ω j ) relation to extra-dimensional ISPs µ ij = − k [ − 2 ǫ ] · k [ − 2 ǫ ] ⊥ , i ⊥ , j = k i · k j − k � , i · k � , j − k [4] ⊥ , i · k [4] (5) ⊥ , j 7/15 Christian Brønnum-Hansen High Precision for Hard Processes

  23. going back to the all-plus case � � � � tr + (1235)( k 1 + p 5 ) 2 + s 12 s 34 s 45 ∆ ∝ F ( d s , µ ij ) (6) 8/15 Christian Brønnum-Hansen High Precision for Hard Processes

  24. going back to the all-plus case � � � � tr + (1235)( k 1 + p 5 ) 2 + s 12 s 34 s 45 ∆ ∝ F ( d s , µ ij ) (6) � � µ 11 µ 22 + ( µ 11 + µ 22 ) 2 + 2 µ 12 ( µ 11 + µ 22 ) F ( d s , µ ij ) = ( d s − 2) � � µ 2 + 16 12 − µ 11 µ 22 d s is spin dimension, FDH results obtained for d s = 4 8/15 Christian Brønnum-Hansen High Precision for Hard Processes

  25. going back to the all-plus case � � � � tr + (1235)( k 1 + p 5 ) 2 + s 12 s 34 s 45 ∆ ∝ F ( d s , µ ij ) (6) � � µ 11 µ 22 + ( µ 11 + µ 22 ) 2 + 2 µ 12 ( µ 11 + µ 22 ) F ( d s , µ ij ) = ( d s − 2) � � µ 2 + 16 12 − µ 11 µ 22 d s is spin dimension, FDH results obtained for d s = 4 same pattern for the other contributing topologies 8/15 Christian Brønnum-Hansen High Precision for Hard Processes

  26. construction of a simple “no- µ ” basis � � m α ij ∆ T = c i (7) j i m j ∈ S 9/15 Christian Brønnum-Hansen High Precision for Hard Processes

  27. rational coefficient in external kinematics construction of a simple “no- µ ” basis � � m α ij ∆ T = c i (7) j i m j ∈ S 9/15 Christian Brønnum-Hansen High Precision for Hard Processes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend