two loop integrand decomposition into master integrands
play

Two-Loop Integrand Decomposition Into Master Integrands And Surface - PowerPoint PPT Presentation

Two-Loop Integrand Decomposition Into Master Integrands And Surface Terms Matthieu Jaquier Physics Institute University of Freiburg Loopfest XV Buffalo NY 15 17 th August 2016 Based on work with S. Abreu, Z. Bern, F. Febres-Cordero, H.


  1. Two-Loop Integrand Decomposition Into Master Integrands And Surface Terms Matthieu Jaquier Physics Institute University of Freiburg Loopfest XV Buffalo NY 15 − 17 th August 2016 Based on work with S. Abreu, Z. Bern, F. Febres-Cordero, H. Ita, B. Page and M. Zeng. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 1 / 19

  2. Introduction LHC era High-luminosity run of the LHC will narrow down experimental errors substantially. Need to provide NNLO predictions for many processes. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 2 / 19

  3. Introduction Progress in NNLO phenomenology Di-photon: [Catani, Cieri, de Florian, Ferrera, Grazzini 11; Campbell, Ellis, Li, Williams 16] Dijet: [Currie, Gehrmann-De Ridder, Gehrmann, Glover, Pires, Wells 14] W+J: [Boughezal, Focke, Liu, Petriello 15] Z+J: [Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan 15; Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello 15] H+J: [Chen, Cruz-Martinez, Gehrmann, Glover, MJ 16; Caola, Melnikov, Schulze 15; Boughezal, Focke, Giele, Liu, Petriello 15] tt: [Czakon, Fiedler, Heymes, Mitov 16] WW: [Gehrmann, Grazzini, Kallweit, Maierh¨ ofer, v. Mannteuffel, Pozzorini, Rathlev, Tancredi 14; Caola, Melnikov, R¨ ontsch, Tancredi 15] ZZ: [Cascioli, Gehrmann, Grazzini, Kallweit, Maierh¨ ofer, v. Mannteuffel, Pozzorini, Rathlev, Tancredi, Weihs 14; Grazzini, Kallweit, Rathlev 15; Caola, Melnikov, R¨ ontsch, Tancredi 16] ZH: [Ferrera, Grazzini, Tramontano 14; Campbell, Ellis, Williams 16] Z γ , W γ : [Grazzini, Kallweit, Rathlev, Torre 14] HH: [de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierh¨ ofer, Mazzitelli, Rathlev 16] Can we go beyond 2 → 2? Multiscale processes? 5-point amplitudes [Badger, Frellesvig, Zhang 15; Gehrmann, Henn, Lo Presti 15] 6-point amplitudes [Dunbar, Perkins 2016; Badger, Mogull, Peraro 16] Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 3 / 19

  4. Introduction Current limitations ✑ Main bottleneck: two loop contribution Feynman diagrams Many diagrams Large cancellations ↓ Process specific Feynman Integrals Tensor reduction [Tarasov 96; Anastasiou, Glover, Oleari 99] IBP identities [Tkachov, Chetyrkin 81] ⇒ Few master integrals Useful for several processes Differential equations [Gehrmann, Remiddi 01] Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 4 / 19

  5. Introduction Status at NLO Significant improvements due to on-shell methods: Fully automatised computations. All necessary master integrals known. Amplitudes assembled from on-shell and gauge-invariant pieces. (Tree amplitudes ← recursion [Berends, Giele 88; Britto, Cachazo, Feng, Witten 05] ) → Feynman diagrams avoided! Implementations: Blackhat [Bern, Dixon, Febres Cordero, H¨ oche, Ita, Kosower, Maˆ ıtre, Ozeren 13] NJET [Badger, Biedermann, Uwer, Yundin 12] OpenLoops [Cascioli, Maierh¨ ofer, Pozzorini 12] MadGraph [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro 14] GoSam [Cullen, v. Deurzen, Greiner, Heinrich, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, v, Soden-Fraunhofen, Tramontano 14] ✑ Can the same be done at two loops? ✒ [Badger, Bobadilla, Caron-Huot, Frelleswig, Johansson, Kosower, Larsen, Mastrolia, Ossola, Primo, Zhang, . . . ] Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 5 / 19

  6. Introduction Goal Find parametrisation j c j t j i c i t i k c k t k ( ℓ ) � master ( ℓ ) + � surface ( ℓ ) � � � d D ℓ d D ℓ I i 1 ... i n = = . ρ 1 . . . ρ n ρ 1 . . . ρ n [Ossola, Papadopoulos, Pittau 06; Bern, Dixon, Kosower] The coefficients c k can be determined on the cut [Bern, Dixon, Kosower 06] , ρ 1 ρ 2 ρ n � c k t k ( ℓ ) = ( ℓ ) . k ρ 3 Parametrisation in terms of integrands of master integrals and terms vanishing upon integration. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 6 / 19

  7. Integrand decomposition at one loop Adapted coordinates Parametrise the loop momentum in terms of inverse propagators ρ i and (depending on the number of propagators available) additional transverse variables α : D p D t ℓ µ = � � r i v µ i + α a n µ [ van Neerven , Vermaseren 84; see also The analytic S − matrix . ] a a =1 i =1 r i = − 1 ( ρ i + m 2 i − q 2 i ) − ( ρ i − 1 + m 2 i − 1 − q 2 � � i − 1 ) . 2 With r i = ( ℓ · p i ) and α i = ( ℓ · n i ). Putting propagators on shell easily implemented as ρ i → 0. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 7 / 19

  8. Integrand decomposition at one loop Adapted coordinates We have D +1 loop variables, ρ 0 , . . . , ρ D p , α 1 , . . . , α D t , and one constraint, � D p D t � 2 0 = ℓ 2 − m 2 � � α 2 a − m 2 0 − ρ 0 = + 0 − ρ 0 = c ( ρ, α ) . r i v i a =1 i =1 c ( ρ, α ) = 0 defines the physical momentum space. Tensor terms are given by algebraic functions: t µ 1 ...µ n ℓ µ 1 . . . ℓ µ n = � ( α a ) k a ( ρ i ) k i , a , i with k a and k i bounded by QCD power counting. ⇒ Parametrisation of the integrand together with the scalar one. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 8 / 19

  9. Integrand decomposition at one loop Parametrisation of the Integrand What are the master integrals? ֒ → Solve integration-by-part (IBP) identities: � u µ t ( ℓ ) d D ℓ � � = 0 , (2 π ) D ∂ µ ρ 1 . . . ρ n ⇒ integrand parametrisation: All integrands = master integrands + surface terms (IBP’s) [Ita 15] , where the surface terms vanish upon integration. Automatically performs the reduction to master integrals → advantage for numerical computation. Keep surface terms only during intermediate steps of the computation. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 9 / 19

  10. Integrand decomposition at one loop IBP generating vectors Generic vector fields u µ yield IBP’s with doubled propagators. This can be avoided by choosing vectors satisfying [Gluza, Kajda, Kosower 11] u µ = ( f i ρ i , u a ) [ Ita 15; Larsen , Zhang 15] ( u µ ∂ µ ) ρ i = f i ( ℓ ) ρ i ∀ ρ i ⇒ Then, � u µ t ( ℓ ) � = ( ∂ µ u µ ) t ( ℓ ) + u µ ∂ µ t ( ℓ ) t ( ℓ ) u µ ∂ µ ρ j � − ∂ µ ρ 1 . . . ρ 2 ρ 1 . . . ρ n ρ 1 . . . ρ n ρ 1 . . . ρ n j . . . ρ n j = ( ∂ µ u µ ) t ( ℓ ) + u µ ∂ µ t ( ℓ ) t ( ℓ ) f j � − . ρ 1 . . . ρ n ρ 1 . . . ρ n ρ 1 . . . ρ n j Impose u µ ∂ µ c ( ρ, α ) = 0 to stay inside the physical momentum space. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 10 / 19

  11. Integrand decomposition at one loop IBP generating vectors at one loop 3 Types of IBP generators: Horizontal ( ρ i = 0), vertical ( α a = 0) and mixed. u µ Horizontal [ ab ] ∂ µ = α a ∂ b − α b ∂ a Generic topologies Vertical u µ ∂ µ = � Links different topologies i f i ρ i ∂ i u µ ∂ µ = � i f i ρ i ∂ i + � Mixed a g a α a ∂ a Degenerate on-shell PS How to find the integrand decomposition? Write down all monomials in α compatible with power counting. Act with the IBP generating vectors → surface terms. The master integrands are in the complement. This reproduces the well-known one-loop results for all topologies. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 11 / 19

  12. Integrand decomposition at two loops Two loop topologies Planar: two sets of one-loop para’s: p t p ˜ ˜ N − 1 ρ 0 , . . . , ρ D p , α 1 , . . . , α D t , c ( ρ, α ) p 1 ρ 0 ρ 0 , . . . , ˜ ˜ ρ ˜ D p , ˜ α 1 , . . . , ˜ α ˜ D t , ˜ c ( ρ, α ) p 2 ρ 1 ρ 0 ˆ ρ 2 p 3 ˜ p 3 ρ 2 ˜ Additional constraint from central ρ 1 ˜ ˜ p 2 propagator: ρ 0 ˜ p 1 ˜ c ( ρ, ˜ ˆ ρ, α, ˜ α ) = 0 p b p N − 1 Works for non-planar and higher loops as well. Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 12 / 19

  13. Surface terms Two loop IBP generating vectors The generating vectors must satisfy u µ ∂ µ { c , ˜ c } = 0. Thus they are made of combinations of one loop generating vectors. Imposing furthermore u µ ∂ µ ˆ c ( ρ, ˜ ρ, α, ˜ α ) = 0 singles out the following combinations: Two loop rotations: u µ [ abc ] = ∂ [ a | u µ | bc ] , Diagonal rotations: u diag ,µ = u µ u µ [ ab ] + ˜ [ ab ] , [ ab ] Crossed rotations: u µ [ ab ][ cd ] = (˜ u [ cd ] ˆ c ) u µ [ ab ] − ( u [ ab ] ˆ c )˜ u µ [ cd ] . Additional IBP generators for: Nonplanar Degenerate phase space D dimensions Matthieu Jaquier (Physics Institute Freiburg) Two-loop Integrand Decomposition August 11, 2016 13 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend