multiplicity fluctuations
play

Multiplicity Fluctuations Josef Uchytil FNSPE CTU in Prague 27. 9. - PowerPoint PPT Presentation

Multiplicity Fluctuations Josef Uchytil FNSPE CTU in Prague 27. 9. 2017 Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 1 / 25 Outline Statistical moments 1 Multiplicity fluctuations within a simple model 2


  1. Multiplicity Fluctuations Josef Uchytil FNSPE CTU in Prague 27. 9. 2017 Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 1 / 25

  2. Outline Statistical moments 1 Multiplicity fluctuations within a simple model 2 Multiplicity fluctuations within a Hadron Gas Model (HRG) with 3 chemical equilibrium Multiplicity fluctuations within a Hadron Gas Model (HRG) without 4 chemical equilibrium Conclusion and outlook 5 Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 2 / 25

  3. Statistical moments ′ : ϕ m ( X ) ′ = E ( X m ) m-th statistical moment ϕ m ( X ) m-th central moment ϕ m ( X ) : ϕ m ( X ) = E ( X − EX ) m first four central moments are of great significance mean: M = ϕ 1 , variance: σ 2 = ϕ 2 skewness: S = ϕ 3 /ϕ 3 / 2 - measure of the assymetry of the probability 2 distribution kurtosis: κ = ϕ 4 /ϕ 2 2 - measure of the ”tailedness”of the probability distribution Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 3 / 25

  4. Skewness (left) and kurtosis (right). Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 4 / 25

  5. Calculation of the multiplicity fluctuations within the statistical model grandcanonical and canonical ensemble assumed, event-by-event distributions of conserved quantities - characterized by the moments (M, σ , S, κ ) introduction of the following products: S σ = ϕ 3 /ϕ 2 , κσ 2 = ϕ 4 /ϕ 2 , M /σ 2 = ϕ 1 /ϕ 2 , S σ 3 / M = ϕ 3 /ϕ 1 -the volume term in the distribution gets obviously cancelled; direct comparison of experimental measurement and theoretical calculation possible large volume limit (V → ∞ ) - all statistical ensembles (MCE, CE, GCE) equivalent Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 5 / 25

  6. Partition functions in statistical ensembles - GC formalism HRG model - all relevant degrees of freedom contained in the partition function confined, strongly interacting matter - interactions that result in resonance formation included nj �� + ∞ � z j ( n j ) λ GC partition function: Z GC ( λ j ) = � j exp j where n j =1 n j � n j m j z j ( n j ) = ( ∓ 1) n j +1 g j V 2 π 2 n j Tm 2 � is the single particle partition j K 2 T function K 2 . . . modified Bessel function, V . . . volume of the hadron gas λ j = exp( µ j T ) . . . fugacity for each particle species j , m j . . . hadron mass µ j . . . chemical potential of a particle species j , g j = 2 J j + 1 . . . spin degeneracy ∓ . . . upper sign for fermions, lower sign for bosons Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 6 / 25

  7. Partition functions in statistical ensembles - canonical formalism constraint - fixed charges → partition function not factorized into one-species expressions let � Q = ( Q 1 , Q 2 , Q 3 ) = ( B , S , Q ) · · · vector of charges let � q j = ( q 1 , j , q 2 , j , q 3 , j ) = ( b j , s j , q j ) · · · vector of charges of the hadron species j Wick-rotated fugacities: λ j = exp[ i � i q i , j φ i ] Canonical partition function: � 2 π �� 3 � 1 d φ i e − iQ i φ i Z � Q = Z GC ( λ j ) i =1 2 π 0 h . . . set of hadron species: λ j → λ h λ j Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 7 / 25

  8. Results of the first four moments Z � ∂ Z � Q − nj � qj 1 � ∞ � N h � = ∂λ h | λ h =1 = � Q n j =1 z j ( n j ) Z � j ∈ h Z � Q Q Z � ∂ Z � � � �� � + ∞ Q − nj � qj N 2 1 ∂ � � = λ h Q | λ h =1 = � n j =1 n j z j ( n j ) + h Z � ∂λ h ∂λ h j ∈ h Z � Q Q Z � � + ∞ � + ∞ Q − nj � qj − nk � qk � n j =1 z j ( n j ) � n k =1 z k ( n k ) j ∈ h k ∈ h Z � Q Z � � � � ∂ Z � ��� � + ∞ Q − nj � qj N 3 1 ∂ λ h ∂ n j =1 n 2 � � Q | λ h =1 = � = λ h j z j ( n j ) + h j ∈ h Z � ∂λ h ∂λ h ∂λ h Z � Q Q �� Z � � � + ∞ � + ∞ Q − nj � qj − nk � qk 3 n j =1 n j z j ( n j ) � n k =1 z k ( n k ) + j ∈ h k ∈ h Z � Q Z � � + ∞ � + ∞ � + ∞ Q − nj � qj − nk � qk − nl � ql � n j =1 z j ( n j ) � n k =1 z k ( n k ) � n l =1 z l ( n l ) j ∈ h k ∈ h l ∈ h Z � Q Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 8 / 25

  9. � ∂ ∂ Z � = 1 � ∂ � ∂ � ���� N 4 Q � � λ h λ h λ h | λ h =1 = h ∂λ h ∂λ h ∂λ h ∂λ h Z � Q   + ∞ + ∞ + ∞ Z � Z � Q − n j � q j Q − n j � q j − n k � q k � � n 3 � � n 2 � � j z j ( n j ) +4 j z j ( n j ) z k ( n k )  Z � Z � Q Q n j =1 n j =1 n k =1 j ∈ h j ∈ h k ∈ h   + ∞ + ∞ Z � Q − n j � q j − n k � q k � � � � + 3 n j z j ( n j ) n k z k ( n k )  Z � Q n j =1 n k =1 j ∈ h k ∈ h   + ∞ + ∞ + ∞ Z � Q − n j � q j − n k � q k − n l � q l � � � � � � + 6 n j z j ( n j ) z k ( n k ) z l ( n l )  Z � Q n j =1 n k =1 n l =1 j ∈ h k ∈ h l ∈ h + ∞ + ∞ + ∞ � � � � � � + [ z j ( n j ) z k ( n k ) z l ( n l ) j ∈ h n j =1 k ∈ h n k =1 l ∈ h n l =1 + ∞ Z � Q − n j � q j − n k � q k − n l � q l − n m � q m � � z m ( n m ) ] Z � Q n m =1 m ∈ h Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 9 / 25

  10. Asymptotic fluctuations in the canonical ensemble N j ! � N j � N j e − � N j � 1 Poissonian distribution of fluctuations: P GC = Canonical partition function: � 2 π �� 3 � 1 d φ i e − iQ i φ i Z � Q = Z GC ( λ j ) i =1 2 π 0 integration performed in the complex w plane: w i = exp[ i φ i ] Z � Q = 1 dw Q w − B − 1 w − S − 1 w − Q − 1 j z j (1) w b i B w s i S w q i � � � exp � dw B dw S (2 π i ) 3 B S Q Q obviously: w − ( B , Q , S ) = exp[ − ( B , Q , S ) ln w B , Q , S ] B , Q , S w ) = w b j − 1 w s j − 1 w q j − 1 ; ρ B , S , Q = B , S , Q g ( � B S Q V z k (1) S w q k V w b k B w s k f ( � w ) = − ρ B ln w B − ρ S ln w S − ρ Q ln w Q + � k Q 1 � � � q j = dw Q g ( � w ) exp[ Vf ( � w )] Z � dw B dw S Q − � (2 π i ) 3 method: saddle-point expansion Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 10 / 25

  11. Multiplicity fluctuations for a simple model I. classical pion gas - no b or s quarks → � Q = (0 , 0 , Q ) saddle point: w 0 = λ Q only π + and π − considered ν = V , g ( w ) = 1 / w , f ( w ) = − ρ Q ln w + z π V ( w + 1 w ) �� j = ± 1 z π (1) w q j � 1 dw q w − Q − 1 � Z Q = exp q 2 π i Q s π + = s π − = 0; m π + = m π − = 139 . 57 MeV � p 2 + m 2 V d 3 p exp( − � z j (1) = (2 J j + 1) j ) = (2 π ) 3 � p 2 + m 2 V d 3 p exp( − � j ) (2 π ) 3 Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 11 / 25

  12. Multiplicity fluctuations for a simple model II. � � � � γ ( λ Q ) − α ( λ Q ) � Z π Q = Z GC 1 λ Q + 1 1 1 + O ( V − 2 ) − λ 2 λ Q 2 π f ′′ ( λ Q ) V λ Q λ 3 Q f ′′ ( λ Q ) Q Q � Q − Q i = Z GC ′′ ( λ Q )[1 + 1 1 Z π V [ γ ( λ Q ) λ Q +1 2 π f Q + ( q j − 1) α ( λ Q ) − 1 1 ′′ ( λ Q )] + O ( V − 2 )] 2( q j − 1)( q j − 2) λ 2 λ Q Q f thermodynamical limit V → ∞ : Z π = z π λ ± 1 Q + O ( V − 1 ) = � π ± � GC + O ( V − 1 ) � π ± � = z π Q ∓ 1 Z π Q Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 12 / 25

  13. Fluctuations in a hadron resonance gas model with chemical equilibrium Susceptibilities and cumulants: = ∂ l ( P / T ) 4 χ ( i ) ∂ ( µ i / T ) l | T l χ ( i ) 1 1 1 = VT 3 � N i � c = VT 3 � N i � χ ( i ) 1 (∆ N i ) 2 � 1 (∆ N i ) 2 � � � 2 = c = VT 3 VT 3 χ ( i ) 1 (∆ N i ) 3 � 1 (∆ N i ) 3 � � � 3 = c = VT 3 VT 3 �� (∆ N i ) 2 � 2 � χ ( i ) 1 (∆ N i ) 4 � 1 (∆ N i ) 4 � � � 4 = c = − 3 VT 3 VT 3 Equilibrium pressure: P / T 4 = i ln Z M / B 1 � ( V , T , µ B , µ Q , µ S ) m i VT 3 ln Z M / B = ∓ Vg i d 3 k ln(1 ∓ z i exp( − ǫ i / T )) � m i (2 π ) 3 Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 13 / 25

  14. Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 14 / 25

  15. Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 15 / 25

  16. Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 16 / 25

  17. Inclusion of resonances VT 3 ∂ ( P / T 4 ) � ∂ ( µ h / T ) | T = � N h � + � N R � � n h � R (1) R where � N h � and � N R � are the means of the primordial numbers of hadrons and resonances, respectively. The sum runs over all the resonances in the model. 26 particle species we consider stable: π 0 , π + , π − , K + , K − , K 0 , ¯ K 0 , η and p , d , λ 0 , σ + , σ 0 , σ − , Ξ 0 , Ξ − , Ω − and their respective anti-baryons r b R r n R � n h � R ≡ � h , r b R r - the branching ratio of the decay-channel and n R h , r = 0 , 1 , . . . - number of hadrons h formed in that specific decay-channel. Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 17 / 25

  18. Josef Uchytil (FNSPE CTU in Prague) Multiplicity Fluctuations 27. 9. 2017 18 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend