raqis 2016
play

RAQIS-2016 NIKITA NEKRASOV Geneva, August 23, 2016 RAQIS2016 - PowerPoint PPT Presentation

RAQIS-2016 NIKITA NEKRASOV Geneva, August 23, 2016 RAQIS2016 Geneva August 23 Nikita Nekrasov Plan Quantum integrable systems from gauge theories Gauge theories from branes Y , Q and Q -observables


  1. ♦♦♦ Random variables: Young diagrams λ (1) , . . . , λ ( n )

  2. ♦♦♦ Random variables: | λ | colored points z α, i , j In the growth picture z α, i , j = a α + ε ′ ( i − 1) + ε ′′ ( j − 1) 1 ≤ j ≤ λ ( α ) 1 ≤ i ≤ ℓ λ ( α ) , i blue α = 1 , . . . , n

  3. ♦♦♦ � λ (1) , . . . , λ ( n ) � Random variables: n partitions Λ = The role of the fugacity: extra weight ℓ λ ( α ) n � � q λ ( α ) q | Λ | = i α =1 i =1

  4. ♦♦♦ Boltzmann weights Energy of charges � c ) · ( u ε ′ ,ε ′′ ( z c − z ˜ ε ′ ) ) e − ch ( c ) ch (˜ c ) − u ε ′ ,ε ′′ ( z c − z ˜ c +˜ µ Λ = c ∈ ∂ Λ , ˜ c ∈ ∂ Λ with the charges ch ( c ) = ± 1 as in the pictures

  5. ♦♦♦ Boltzmann weights Energy of charges � c ) · ( u ε ′ ,ε ′′ ( z c − z ˜ ε ′ ) ) e − ch ( c ) ch (˜ c ) − u ε ′ ,ε ′′ ( z c − z ˜ c +˜ µ Λ = c ∈ ∂ Λ , ˜ c ∈ ∂ Λ with the charges ch ( c ) = ± 1 as in the pictures ch ( c ) = +1 for new growth points ch ( c ) = − 1 for decay points

  6. The potential � � ∞ � e − tz 1 u ε ′ ,ε ′′ ( z ) = d dt � t t s � (1 − e t ε ′ )(1 − e t ε ′′ ) � Γ( s ) ds 0 s =0 solves u ε ′ ,ε ′′ ( z ) + u ε ′ ,ε ′′ � z − ε ′ − ε ′′ � − u ε ′ ,ε ′′ � z − ε ′ � − u ε ′ ,ε ′′ � z − ε ′′ � = log ( z ) (3) ♦

  7. ♦♦♦ Boltzmann weights Energy of charges � c ) · ( u ε ′ ,ε ′′ ( z c − z ˜ ε ′ ) ) e − ch ( c ) ch (˜ c ) − u ε ′ ,ε ′′ ( z c − z ˜ c +˜ µ Λ = c ∈ ∂ Λ , ˜ c ∈ ∂ Λ � A 0 -type model

  8. ♦♦♦ Boltzmann weights: generalization Graph γ with the set of vertices Vert γ and the set of edges Edge γ � λ ( α ) � α =1 ... n � λ ( i ,α ) � α =1 ,..., n i n → ( n i ) i ∈ Vert γ , Λ = → (Λ i ) i ∈ Vert γ = i ∈ Vert γ Assignment of masses m e ∈ C to the edges e ∈ Edge γ � � e − ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ c ) µ λ = × i ∈ Vert γ c ∈ ∂λ i , ˜ c ∈ ∂λ i � � e ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ c + m e ) × e ∈ Edge γ c ∈ ∂λ s ( e ) , ˜ c ∈ ∂λ t ( e ) This is a γ -quiver model

  9. ♦♦♦ When γ is of the � ADE type � � c ) × e − ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ µ λ = i ∈ Vert γ c ∈ ∂λ i , ˜ c ∈ ∂λ i � � e ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ c + m e ) × (4) e ∈ Edge γ c ∈ ∂λ s ( e ) , ˜ c ∈ ∂λ t ( e ) The γ ADE -quiver model can be obtained from the � A 0 model by “orbifolding”

  10. ♦♦♦ When γ is of the � ADE type � � c ) × e − ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ µ λ = i ∈ Vert γ c ∈ ∂λ i , ˜ c ∈ ∂λ i � � e ch ( c ) ch (˜ c ) u ε ′ ,ε ′′ ( z c − z ˜ c + m e ) × (5) e ∈ Edge γ c ∈ ∂λ s ( e ) , ˜ c ∈ ∂λ t ( e ) by a subgroup Γ γ of SU (2)

  11. ♦♦♦ Proliferation of fugacities q − → ( q i ) i ∈ Vert γ � q | λ | − q | λ i | → i i ∈ Vert γ ♦

  12. ♦♦♦ New models by taking limits e.g. q i → 0 for some i ∈ Vert γ and/or a i ,α → ∞ for some ( i , α ) ♦

  13. ♦♦♦ New models by taking limits e.g. q i → 0 for some i ∈ Vert γ and/or a i ,α → ∞ for some ( i , α ) For example, A 1 model ♦

  14. ♦♦♦ The A 1 model � λ (1) , . . . , λ ( n ) � Random variable, again Λ = ♦

  15. ♦♦♦ The A 1 model � λ (1) , . . . , λ ( n ) � Random variable, again Λ = The measure is different � � c ) × e − ch ( c ) ch (˜ c ) · u ε ′ ,ε ′′ ( z c − z ˜ µ Λ = P ( z c ) , c ∈ ∂ Λ , ˜ c ∈ ∂ Λ c ∈ Λ Mass polynomial 2 n � m f ∈ C P ( x ) = ( x − m f ) f =1 ♦

  16. ♦♦♦ The A 1 model � λ (1) , . . . , λ ( n ) � Random variable, again Λ = The measure is different � � c ) × e − ch ( c ) ch (˜ c ) · u ε ′ ,ε ′′ ( z c − z ˜ µ Λ = P ( z c ) , c ∈ ∂ Λ , ˜ c ∈ ∂ Λ c ∈ Λ Mass polynomial 2 n � m f ∈ C P ( x ) = ( x − m f ) = P + ( x + ε 1 + ε 2 ) P − ( x ) f =1 n � ( x − m ± P ± ( x ) = f ) f =1 ♦

  17. ♦♦♦ The A 1 model is a limit of the � A 2 -model q ± 1 → 0 a ± 1 ,α → m ± α Masses from frozen Coulomb moduli α = 1 , . . . n q 0 → q � � c ) × e − ch ( c ) ch (˜ c ) · u ε ′ ,ε ′′ ( z c − z ˜ q | Λ | µ Λ = ( q P ( z c )) , c ∈ ∂ Λ , ˜ c ∈ ∂ Λ c ∈ Λ ♦

  18. ♦♦♦ OBSERVABLES ∞ � 1 Y i ( x ) = x n i exp − k x k TrΦ k i k =1 ↑ four dimensional definition ♦

  19. ♦♦♦ Y -operators the statistical model � n i � � ∈ ∂ + λ ( i ,α ) ( x − z c � ) � Y i ( x )[ λ ] = � ∈ ∂ − λ ( i ,α ) ( x − z c � ) α =1 z c � = a α + ε ′ ( i − 1) + ε ′′ ( j − 1) , c � = ( α, � ) , � = ( i , j ) � are the + charges, � are the − charges # { � ∈ ∂ + λ } − # { � ∈ ∂ − λ } = 1 ♦

  20. ♦♦♦ Q -operators in the statistical model x − a i ,α n i � � ( − ε ′ ) x − z c − ε ′′ ε ′ Q (1) ( x )[ λ ] = � � i − x − a i ,α x − z c Γ α =1 c ∈ Λ ( i ) ε ′ x − a i ,α n i � � ( − ε ′′ ) x − z c − ε ′ ε ′′ Q (2) ( x )[ λ ] = � � i − x − a i ,α x − z c Γ α =1 c ∈ Λ ( i ) ε ′′ ♦

  21. ♦♦♦ Q versus Y − ε ′ � x − a i ,α ni � ε ′ x − z c − ε ′′ Q (1) � � ( x )[ λ ] = i � x − a i ,α � x − z c α =1 Γ − c ∈ Λ ( i ) ε ′ − ε ′′ � x − a i ,α ni � ε ′′ x − z c − ε ′ Q (2) � � ( x )[ λ ] = i � x − a i ,α � x − z c α =1 Γ − c ∈ Λ ( i ) ε ′′ Q (1) Q (2) ( x ) ( x ) i i = = Y i ( x ) Q (1) Q (2) ( x − ε ′ ) ( x − ε ′′ ) i i ♦

  22. ♦♦♦ Nonperturbative Dyson-Schwinger equation NN’15 in the A 1 case � � Y ( x + ε ′ + ε ′′ ) + q P ( x ) Y ( x ) has no singularities in x ♦

  23. ♦♦♦ Nonperturbative Dyson-Schwinger equation in the A 1 case � � Y ( x + ε ′ + ε ′′ ) + q P ( x ) = T ( x ) Y ( x ) is a degree n polynomial in x ♦

  24. ♦♦♦ Back to quantum integrable system Take a limit ε ′ → 0, ε ′′ = � - finite NS = NN-Shatashvili limit’09 Limit shape phenomenon NN, A. Okounkov’03 NN, V. Pestun, S. Shatashvili’14 � Y ( x ) − 1 � = Y ( x ) − 1 , � Y ( x ) � = Y ( x ) Y ( x + � ) + q P ( x ) Y ( x ) = T ( x ) is a degree n polynomial in x ♦

  25. ♦♦♦ Back to quantum integrable system Take a limit ε ′ → 0, ε ′′ = � - finite Limit shape phenomenon = ⇒ linear difference equation on Q ( x ) � Q (2) ( x ) − 1 � = Q ( x ) − 1 , � Q (2) ( x ) � = Q ( x ) Q ( x + � ) + q P ( x ) Q ( x − � ) = T ( x ) Q ( x ) The celebrated T − Q equation R. Baxter L. Faddeev, L. Takhtadzhan E. Sklyanin ♦

  26. ♦♦♦ Back to quantum integrable system Take a limit ε ′ → 0, ε ′′ = � - finite The celebrated T − Q equation Q ( x + � ) + q P ( x ) Q ( x − � ) = T ( x ) Q ( x ) Has two solutions over quasiconstants ♦

  27. ♦♦♦ Back to quantum integrable system Take a limit ε ′ → 0, ε ′′ = � - finite The celebrated T − Q equation Q ( x + � ) + q P ( x ) Q ( x − � ) = T ( x ) Q ( x ) Q ( x + � ) + q P ( x ) � � Q ( x − � ) = T ( x ) � Q ( x ) Has two solutions over quasiconstants Quantum (discrete) Wronskian W ( x ) = Q ( x + � / 2) � Q ( x − � / 2) − Q ( x − � / 2) � Q ( x + � / 2) = quasi-constant up to normalization ♦

  28. ♦♦♦ Back to quantum integrable system Take a limit ε ′ → 0, ε ′′ = � - finite The celebrated T − Q equation Q ( x + � ) + q P ( x ) Q ( x − � ) = T ( x ) Q ( x ) Q ( x + � ) + q P ( x ) � � Q ( x − � ) = T ( x ) � Q ( x ) Both solutions are used in the functional Bethe ansatz E. Sklyanin Where is � Q ( x ) in gauge theory? ♦

  29. ♦♦♦ Nonperturbative Dyson-Schwinger equation in the A 1 case � � Y ( x + ε ′ + ε ′′ ) + q P ( x ) = T ( x ) Y ( x ) has no singularities in x can be shown directly (residue matching) ♦

  30. ♦♦♦ Nonperturbative Dyson-Schwinger equation in the A 1 case � � Y ( x + ε ′ + ε ′′ ) + q P ( x ) = T ( x ) Y ( x ) has no singularities in x can be shown conceptually ♦

  31. ♦♦♦ Nonperturbative Dyson-Schwinger equation in the A 1 case X 1 , x = Y ( x + ε ′ + ε ′′ ) + q P ( x ) Y ( x ) A 1 fundamental qq -character ♦

  32. ♦♦♦ THE qq -CHARACTERS X w ,ν = PARTITION FUNCTION OF A POINT-LIKE DEFECT D w ,ν ♦

  33. ♦♦♦ THE qq -CHARACTERS X w ,ν = PARTITION FUNCTION OF A POINT-LIKE DEFECT D w ,ν which can be engineered using intersecting branes ♦

  34. ♦♦♦ Brane-world scenarios ♦

  35. ♦♦♦ Local model: ∪ a < b C 2 ab ⊂ C 4 For example, when 1 ≤ a , b ≤ 3 ♦

  36. ♦♦♦ Local IIB string model: � � × R 1 , 1 ⊂ R 1 , 9 ∪ a < b C 2 D 5’s and D 5’s spanning ab ⇒ (0 , 2) susy in R 1 , 1 When 1 ≤ a , b ≤ 4 = ♦

  37. ♦♦♦ Chan-Paton spaces N ab for the stack of branes spanning C 2 ab with complex coordinates z a , z b ♦

  38. ♦♦♦ Useful pictures n 12 = dim N 12 branes along C 2 12 ♦

  39. ♦♦♦ Useful pictures n 12 = dim N 12 branes along C 2 12 and n 23 = dim N 23 branes alond C 2 23 ♦

  40. ♦♦♦ n 12 = dim N 12 branes along C 2 n 23 = dim N 23 branes along C 2 12 , 23 , n 13 = dim N 13 branes along C 2 n 24 = dim N 23 branes along C 2 13 , 24 , n 14 = dim N 14 branes along C 2 n 34 = dim N 34 branes along C 2 14 , 34

  41. ♦♦♦ = ♦

  42. ♦♦♦ Integrate out the degrees of freedom on all but one of the stacks To produce observables on the remaining stack of branes ♦

  43. ♦♦♦ How one integrates out the degrees of freedom? Using unbroken supersymmetry and localisation ♦

  44. ♦♦♦ Degrees of freedom associated with k instantons Chan-Paton spaces K = C k =# instanton charge , N ab = C n ab ♦

  45. ♦♦♦ Degrees of freedom associated with instantons: Rectangular complex I ab , J ab matrices, 1 ≤ a < b ≤ 4 ♦

  46. ♦♦♦ Degrees of freedom associated with instantons Square complex matrices B a , a = 1 , . . . , 4 ♦

  47. ♦♦♦ Local ADHM data ♦

  48. ♦♦♦ Partition function of gauge origami ♦

  49. ♦♦♦ Partition Z -function of gauge origami Equivariant integral over the space of solutions of generalized ADHM equations ♦

  50. ♦♦♦ Generalized ADHM equations µ ab + ε abcd µ † cd = 0 µ ab = [ B a , B b ] + I ab J ab ♦

  51. ♦♦♦ Generalized ADHM equations I. µ ab + ε abcd µ † cd = 0 µ ab = [ B a , B b ] + I ab J ab � � I ab I † ab − J † [ B a , B † a ] + ab J ab = ζ · 1 K a a < b 7 hermitian k × k matrix equations ♦

  52. ♦♦♦ Generalized ADHM equations I. µ ab + ε abcd µ † cd = 0 , for all 1 ≤ a < b ≤ 4, where µ ab = [ B a , B b ] + I ab J ab and � � [ B a , B † I ab I † ab − J † µ ≡ a ] + ab J ab = ζ · 1 K a a < b 7 hermitian k × k matrix equations Divide by the U ( k ) action ♦

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend