a new look at integrable models and their deformations
play

A new look at integrable -models and their deformations Dmitri - PowerPoint PPT Presentation

A new look at integrable -models and their deformations Dmitri Bykov Max-Planck-Institut f ur Physik (M unchen) Steklov Mathematical Institute (Moscow) RAQIS, Annecy, 1 September 2020 Based on several papers of the speaker, including


  1. A new look at integrable σ -models and their deformations Dmitri Bykov Max-Planck-Institut f¨ ur Physik (M¨ unchen) Steklov Mathematical Institute (Moscow) RAQIS, Annecy, 1 September 2020 Based on several papers of the speaker, including arXiv:2006.14124 and an upcoming one

  2. Plan – Flag manifold σ -models from spin chains – – Gauged linear σ -models → gauged chiral bosonic Gross-Neveu systems – – Ricci flow: the explicit universal solution – – Chiral anomalies, inclusion of fermions, SUSY – S � SU ( N ) F n 1 ,...,n S = S ( U ( n 1 ) × · · · × U ( n S )) , n i = N i =1 Complex structure ↔ ordering of n 1 , . . . , n S . Complex definition: F = GL ( N, C ) /P P = parabolic subgroup stabilizing the flag � k 0 ∈ L 1 ⊂ . . . ⊂ L S = C N , dim C L k := d k = n i . i =1 (Can be generalized to other groups) Dmitri Bykov | Flag manifold sigma-models 2 /13

  3. Flag manifolds. They arise as effective continuum theories of spin chains with SU ( N ) -symmetry. ( SU (2) -case: [Haldane ’83] , [Affleck ’85] ) The idea is that the flag manifold is the space of N´ eel vacua of the classical chain: – Geometric theory: [DB ’11-’12] – Analysis of spin chains: [Affleck et.al. ’17 ( SU (3) ), ’19, ’20 ( SU ( N ) )] – Discrete ‘t Hooft anomalies [Tanizaki & Sulejmanpasic ’18, Seiberg et.al. ’18] predict gapless spectrum ↔ match with rigorous spin chain results [Lieb, Schultz, Mattis ’61, Affleck, Lieb ’86] Dmitri Bykov | Flag manifold sigma-models 3 /13

  4. The σ -model in conventional terms. In this talk I will discuss mostly the flag σ -models that are (conjecturally) integrable. Symmetric space examples date back to [Pohlmeyer ’76, Zakharov, Mikhaylov ’78, Eichenherr, Forger ’79] In general, take the flag manifold G H , define g = h ⊕ m , J = − g − 1 dg = J h + J m Metric G : the ‘Killing metric’ ds 2 = Tr( J m J m ) Complex structure J B -field: fundamental Hermitian form of the metric B = G ◦ J � d 2 z G mn ∂U m ∂U n Action: S [ G , J ] := [DB, 2014] Σ ahler iff G Note: metric G is only K¨ H is symmetric (= Grassmannian) Geodesics of G are homogeneous [Alekseevsky, Arvanitoyeorgos ’07] . Dmitri Bykov | Flag manifold sigma-models 4 /13

  5. The gauged linear sigma-model (GLSM). K¨ ahler case: GLSM ↔ K¨ ahler quotients. Grassmannian: Gr ( m, N ) = Hom( C m , C N ) / /U ( m ) . Lagrangian L = Tr(( DU ) † ( DU )) , U † U = 1 m . DU := ∂U − i U A , [Cremmer, Scherk ’78, D’Adda, L¨ uscher, di Vecchia ’78] . Flag manifold with K¨ ahler metric: GLSM ↔ Nakajima (quiver) varieties [Nakajima ’94, Nitta ’03, Donagi, Sharpe ’08] . V S − 2 V S − 1 V 1 C N · · · L S − 2 L S − 1 L 1 U 1 L 2 U S − 2 U S − 1 Flag manifold with ‘Killing metric’ (not K¨ ahler for S > 2 ): a ‘gauge field’ [DB ’17]   d S − 1 ∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗ ∗   A ‘reduced’ gauge field!   ∗ ∗ ∗ ∗ A = ( A ) † ,   A = , I will explain the meaning of this   ∗ ∗ ∗ ∗   later on in the talk.   ∗ ∗ ∗ ∗ d 1 d 2 Dmitri Bykov | Flag manifold sigma-models 5 /13

  6. A new look at σ -models [DB ’20] Same models may be obtained by the approach of [Costello, Yamazaki ’2019] from a coupling of two βγ -systems. Together with the GLSM approach this leads to the following alternative definition [DB ’20] � � � � Ψ a 1 + γ 5 Ψ d 1 − γ 5 D Ψ a + ( r s ) cd L = Ψ a / Ψ c Ψ b , ab 2 2 where � � U a Ψ a = , a = 1 , . . . , N ‘Dirac boson’ V a r s is the classical r -matrix of [Belavin, Drinfeld ’80] : 1 − s π − + 1 1 1+ s s r s = 1 − s π + + 1 − s π 0 (solution of classical Yang-Baxter equation) 2 σ -model = chiral gauged Gross-Neveu model (in bosonic incarnation)! (Fermionic version: [Gross, Neveu ’74, Witten ’78, Andrei, Lowenstein ’80] ) Dmitri Bykov | Flag manifold sigma-models 6 /13

  7. Elementary example Chiral symmetry ( λ ∈ C × ) [Zumino, 1977; Mehta 1990] U → λ U, V → λ − 1 V ensures that the interaction is quadratic in U and in V , so that we can integrate out V . Massless Thirring model [Thirring ’58] , cf. [Swieca ’77] for a review N = 1 , ungauged: A = 0 , undeformed: ( r s ) cd ab = δ c a δ d b 2 (Ψ γ µ Ψ) 2 = V ∂U − V ∂U + | U | 2 | V | 2 ∂ Ψ + 1 L = Ψ / cylinder C × with multiplicative coordinate U L = ∂U ∂U Integrate out V : → UU Vanishing β -function: bosonic Thirring vs. free boson (with a linear dilaton) Dmitri Bykov | Flag manifold sigma-models 7 /13

  8. The β -function [DB, ’20] Feynman rules: ( r s ) kl k 1 1 ij z 2 − z 1 z 2 − z 1 z 1 z 2 z 1 z 2 j i j i l Diagrams contributing to the β -function at one loop: i k i l j j l k β -function: N � � � β kl ( r s ) kq ip ( r s ) ql pj − ( r s ) ql ip ( r s ) kq ij = pj p,q =1 Dmitri Bykov | Flag manifold sigma-models 8 /13

  9. Ricci flow [DB ’20] r kl ij = β kl ij has a remarkably simple solution s = e Nτ The Ricci flow equation ˙ (was conjectured in [Costello, Yamazaki 2019] ). Alternatively, return to the σ -model and solve the geometric Ricci flow equations 4 H imn H jm ′ n ′ g mm ′ g nn ′ + 2 ∇ i ∇ j Φ , g ij = R ij + 1 − ˙ B ij = − 1 2 ∇ k H kij + ∇ k Φ H kij , − ˙ Φ = const . − 1 2 ∇ k ∇ k Φ + ∇ k Φ ∇ k Φ + 1 − ˙ 24 H kmn H kmn CP 1 : the ‘sausage’ solution s = e 2 τ ( N = 2 ) [Fateev, Onofri, Zamolodchikov, ’1994] ( s − 1 − s ) | dW | 2 ds 2 = Length ∼ | log s | 0 < s < 1 ( s + | W | 2 )( s − 1 + | W | 2 ) CP N − 1 : Ricci flow interpolates between a cylinder ( C × ) N − 1 in the UV (asymptotic freedom) and a ‘round’ projective space of vanishing radius in the IR. Dmitri Bykov | Flag manifold sigma-models 9 /13

  10. Anomalies [DB ’20] Remember U ∈ C N , so to pass to CP N − 1 we need to gauge the chiral symmetry. However the symmetry is typically anomalous: recall Schwinger’s effective action � eff . = ξ dz dz F zz 1 △ F zz , F zz = i ( ∂ A − ∂ A ) S [Schwinger ’1962] 2 Not invariant under the complexified gauge transformations A → A + ∂α , A → A + ∂α . To cancel the anomaly one can add fermions minimally: � � � � Ψ a 1 + γ 5 Ψ d 1 − γ 5 D Ψ a + ( r s ) cd L = Ψ a / + Θ a / Ψ c Ψ b D Θ a , ab 2 2 Ψ , Θ ∈ Hom( C , C 2 ⊗ C N ) . Incidentally these are the same fermions that cancel the anomaly in L¨ uscher’s nonlocal charge [L¨ uscher, Pohlmeyer ’78, Abdalla et.al., 1981-84] (i.e. an anomaly in the Yangian [Bernard ’91] )! Conjecture: all such flag manifold models with fermions are quantum integrable Dmitri Bykov | Flag manifold sigma-models 10 /13

  11. General setup [’20, to appear] Super phase space Φ = complex symplectic (quiver) super-variety Matter fields U, V in reps. W ⊕ W ∨ of a complex gauge group G gauge (Global) action of a complex group G global Complex moment map µ for G global � Φ � � L = V · D U + U · D V + κ Tr( µ µ ) Complex symplectic quotient instead of K¨ ahler quotient! Anomaly cancellation conditions: Str W ( T a T b ) = 0 ( T a ∈ g gauge ) Str W ( T a ) = 0 Dmitri Bykov | Flag manifold sigma-models 11 /13

  12. Examples [’20, to appear] CP N − 1 model with minimally coupled fermions. Phase space Φ ( s ) = T ∗ CP N − 1 | N = T ∗ V , ) is a vector bundle over CP N − 1 where V = Π ( O (1) ⊕ · · · ⊕ O (1) N times (the ‘fermionic conifold’). G global = SL ( N, C ) × 1 ⊂ PSL ( N | N ) acting on C N | 0 but trivially on C 0 | N . Choosing a different G global , one gets different couplings of the fermions: G global = 1 × SL ( N, C ) : fermionic Gross-Neveu-model G global = PSL ( N | N ) : CP N − 1 | N -model [Read, Saleur ’01, Witten’03, Schomerus et.al.’10] Worldsheet supersymmetric CP N − 1 model. Phase space Φ ( s ) = T ∗ V , where V = Π ( T CP N − 1 ) , G global = SL ( N, C ) C N � � � � V 0 λ ∈ SL (1 | 1) , λ ∈ C × G gauge = g = χ λ U C 1 | 1 U ∈ Hom( C 1 | 1 , C N ) and V ∈ Hom( C N , C 1 | 1 ) . – Super-quivers – Dmitri Bykov | Flag manifold sigma-models 12 /13

  13. Results/Outlook. • Integrable sigma-models beyond symmetric target spaces [DB ’14 + , Costello-Yamazaki 2019] • GLSM formulation beyond K¨ ahler target spaces [DB ’17] • σ -models = gauged chiral Gross-Neveu models [DB ’20] • The one-loop β -function is universal for all of these models (one-loop exact?) • (Complicated) Ricci flow eqs. have a simple (ancient) solution, interpolating between the homogeneous metric and a cylinder • Super phase spaces, anomaly cancellation conditions [’20, to appear] • New way of obtaining SUSY σ -models [’20, to appear] • Interactions are polynomial → relation to Ashtekar variables of GR (direct derivation for SL (2 , R ) [Brodbeck & Zagermann ‘00] ) SO (2) • Poisson brackets of Lax operators are ultralocal [Delduc et.al. ’19] • Should be possible to construct the full quantum theory: S/R-matrix, spectrum (thermodynamic Bethe ansatz), analyze resurgence, etc. Possibly using the ODE/IQFT approach [Bazhanov, Lukyanov, Zamolodchikov 98 + , Bazhanov, Kotousov, Lukyanov ’17] • · · · Dmitri Bykov | Flag manifold sigma-models 13 /13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend